首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y1=xex+2e2x,y2=xex+3e-x,y3=xex—e2x一e-x为某二阶常系数线性非齐次方程的3个特解,设该方程的y"前的系数为1,则该方程为_________.
设y1=xex+2e2x,y2=xex+3e-x,y3=xex—e2x一e-x为某二阶常系数线性非齐次方程的3个特解,设该方程的y"前的系数为1,则该方程为_________.
admin
2018-08-22
102
问题
设y
1
=xe
x
+2e
2x
,y
2
=xe
x
+3e
-x
,y
3
=xe
x
—e
2x
一e
-x
为某二阶常系数线性非齐次方程的3个特解,设该方程的y"前的系数为1,则该方程为_________.
选项
答案
y"一y’一2y=(1--2x)e
x
解析
非齐次方程的两个解的差为对应齐次方程的解,故
Y
1
=y
1
一y
2
=2e
2x
一3e
-x
,
Y
2
=y
1
一y
3
=3e
2x
+e
-x
,
为对应的齐次方程的两个解.于是又可推知
Y
1
+3Y
2
=11e
2x
,3Y
1
—2Y
2
=一11e
-x
,
也是对应的齐次方程的两个解.所以r=2,r=一1是特征方程两个根,特征方程为
(r一2)(r+1)=r
2
一r一2=0,
对应齐次方程为
y"-y’一2y=0.
设该非齐次方程为
y"-y’一2yf(x).
将已知的一个特解代入,求得f(x)=(1—2x)e
x
,故所求的非齐次方程如上所填.
转载请注明原文地址:https://www.kaotiyun.com/show/6Wj4777K
0
考研数学二
相关试题推荐
求二重积分其中D是由曲线直线y=2,y=x所围成的平面区域.
证明:当x>0时,不等式<1+x成立.
若x>一1,证明:当0<α<1时,有(1+x)α<1+αx;当α<0或α>1时,有(1+x)α>1+αx.
设函数f(x)在(a,b)内存在二阶导数,且f"(x)<0.试证:(1)若x0∈(a,b),则对于(a,b)内的任何x,有f(x0)≥f(x)一f’(x0)(x—x0),当且仅当x=x0时等号成立;(2)若x1,x2,…,xn∈(a,b),且xi<xi
已知齐次线性方程组有非零解,且是正定矩阵.求xTx=1,xTAx的最大值和最小值.
已知n维向量组α1,α2……αn中,前n一1个线性相关,后n一1个线性无关,若令β=α1,α2……αn,A=(α1,α2……αn).试证方程组Ax=β必有无穷多组解,且其任意解(α1,α2……αn)T中必有an=1.
设矩阵A=(α1,α2,α3),其中α1,α2,α3是4维列向量,已知非齐次线性方程组Ax=b的通解为x=k(1,一2,3)T+(1,2,一1)T,k为任意常数.试求α1,α2,α3的一个极大线性无关组,并把向量b用此极大线性无关组线性表示;
已知齐次线性方程组(I)为又已知线性方程组(Ⅱ)的通解为x=k1(s,2,3,16)T+k2(2,1,2,t)T,其中k1,k2是任意常数.若方程组(I)与(Ⅱ)同解,试求m,n,s,t的值.
求直线在平面π:x一y+2z—1=0上的投影直线L0的方程,并求L0绕y轴旋转一周所成曲面的方程.
设随机变量X的分布函数为F(x),如果F(0)=,概率密度f(x)=af1(x)+bf2(x),其中f1(x)是正态分布N(0,σ)的密度函数f2(x)是参数为λ的指数分布的密度函数,求常数a,b.
随机试题
气血生化之源是()。
设有三维列向量问k为何值时,①β可由α1,α2,α3线性表示,且表达式唯一;②β可由α1,α2,α3线性表示,但表达式不唯一;③β不能由α1,α2,α3线性表示.
《哈姆莱特》的主人公哈姆莱特是______时期人文主义者的典型形象。(2007年真题)
高渗性脱水易出现
在共同媒介一次暴露造成的暴发中,下列条件中哪条对判断暴露日期无意义
A.处3年以下有期徒刑、拘役、管制或罚金B.处3年至7年有期徒刑,并处罚金C.处2年至7年有期徒刑,并处销售金额50%至2倍罚金D.处3年以上10年以下有期徒刑,并处罚金E.处3年以下有期徒刑、拘役管制或剥夺政治权利伪造、变造、买卖或者
急性肾衰竭最常见的并发症是()。
依据《旅行社条例》规定,申请设立旅行社经营国内旅游业务和入境旅游业务应具备()条件。
BeforehighschoolteacherKimberlyRughgotdowntobusinessatthestartofarecentschoolweek,shejokedwithherstudents
法与国家的一般关系是()。
最新回复
(
0
)