首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=,求A的特征值与特征向量,并判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵.
设A=,求A的特征值与特征向量,并判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵.
admin
2019-11-25
57
问题
设A=
,求A的特征值与特征向量,并判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵.
选项
答案
|λE-A|=[*]=(λ+a-1)(λ-a)(λ-a-1)=0,得矩阵A的特征值为λ
1
=1-a,λ
2
=a,λ
3
=1+a. (1)当1-a≠a,1-a≠1+a,a≠1+a,即a≠0且a≠[*]时,因为矩阵A有三个不 同的特征值,所以A一定可以对角化. λ
1
=1-a时,由[(1-a)E-A]X=0得ξ
1
=[*]; λ
2
=a时,由(aE-A)X=0得ξ
2
=[*]; λ
3
=1+a时,由[(1+a)E-A]X=0得ξ
3
=[*]. 令P=[*],得P
-1
AP=[*]. (2)当a=0时,λ
1
=λ
3
=1, 因为r(E-A)=2,所以方程组(E-A)X=0的基础解系只含有一个线性无关的解向量, 故矩阵A不可以对角化. (3)当a=[*]时,λ
1
=λ
2
=[*], 因为r([*]E-A)=2,所以方程组([*]E-A)X=0的基础解系只含有一个线性无关的解向量,故A不可以对角化.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/66D4777K
0
考研数学三
相关试题推荐
已知n阶矩阵A的每行元素之和为a,当k是自然数时,求Ak的每行元素之和.
设A,B,C均是3阶矩阵,满足AB=B2一BC,其中则A5=________
设f(x)=f(一x),且在(0,+∞)内二阶可导,又f’(x)>0,f"(x)<0,则f(x)在(一∞,0)内的单调性和图形的凹凸性是()
设f(x)在区间[0,1]上连续,在区间(0,1)内存在二阶导数,且f(0)=f(1).证明:存在ξ∈(0,1)使2f’(ξ)+ξf"(ξ)=0.
设x∈(0,1),证明不等式:(1)(1+x)ln2(1+x)<x2;
求(|x|+|y|)dxdy.其中D是由曲线xy=2,直线y=x-1,y=x+1所围成的区域.
平面区域D=((x,y)||x|+|y|≤1},计算如下二重积分:(1)其中f(t)为定义在(一∞,+∞)上的连续正值函数,常数a>0,b>0;(2)(eλx一e-λy)dσ,常数λ>0.
设函数f(x)在x=2的某邻域内可导,且f’(x)=ef(x),f(2)=1,计算f(n)(2).
设A为n阶非奇异矩阵,α为n维列向量,b为常数.记分块矩阵其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.(1)计算并化简PQ;(2)证明:矩阵Q可逆的充分必要条件是αTA-1α≠b.
设n阶矩阵A=,则|A|=________.
随机试题
下列不属于副肿瘤综合征的是
下列哪项是消化道中最膨大的部位
女性,53岁。左乳腺癌手术后化学治疗中。5d前起咳嗽,痰少,颜色不黄。渐有发热,体温最高38.5℃,伴畏寒。血白细胞计数2.8×109/L。X线胸部摄片示右中下肺野大片模糊阴影;并见不规则透亮区,伴右侧少量胸腔积液。本病例肺部感染的病原体可能性最大的当
期货公司在变更注册资本时,应当充分考虑的情况有()。[2010年11月真题]
某企业拟投资900万元,经预计,该投资有效期为4年,该投资项目适用的所得税税率为25%,年税后销售收入为400万元,税后付现成本为150万元,税后净利润100万元,则投资回收期是()年。
商品流通企业战略分析中的经济因素分析要考虑国民经济发展形势,一般来说,经济高速发展的情况下,()。
用于对下级机关布置工作、阐明工作活动的指导原则的领导、指导性文件,称为()。
两个或两个以上模块之间关联的紧密程度称为
Oldpeoplearealwayssayingthattheyoungpeoplearenot【61】theywere.Thesamecommentis【62】fromgenerationtogenerationa
高度重视……
最新回复
(
0
)