首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是秩为3的4阶矩阵,α1,α2,α3是非齐次线性方程组Ax=b的三个解,若α1+α2+α3=(0,6,3,9)T,2α1-α3=(1,3,3,3)T,k为任意常数,则Ax=b的通解为( )
设A是秩为3的4阶矩阵,α1,α2,α3是非齐次线性方程组Ax=b的三个解,若α1+α2+α3=(0,6,3,9)T,2α1-α3=(1,3,3,3)T,k为任意常数,则Ax=b的通解为( )
admin
2016-04-29
113
问题
设A是秩为3的4阶矩阵,α
1
,α
2
,α
3
是非齐次线性方程组Ax=b的三个解,若α
1
+α
2
+α
3
=(0,6,3,9)
T
,2α
1
-α
3
=(1,3,3,3)
T
,k为任意常数,则Ax=b的通解为( )
选项
A、(0,6,3,9)
T
+k(1,1,2,0)
T
B、(0,2,1,3)
T
+k(-1,3,0,6)
T
C、(1,3,3,3)
T
+k(1,1,2,0)
T
D、(-1,3,0,6)
T
+ k(-2,0,-3,0)
T
答案
C
解析
本题考查非齐次线性方程组解的结构,属于基础题.
由r(A)=3,知齐次方程组Ax=0的基础解系只有一个解向量.
由非齐次线性方程组解的性质,知
(α
1
+α
2
+α
3
)-3(2α
2
-α
3
)=(α
1
-α
2
)+4(α
3
-α
2
)=(-3,-3,-6,0)
T
是Ax=0的解,所以Ax=0的基础解系为(1,1,2,0)
T
.
又
2α
2
-α
3
=α
2
+(α
2
-α
3
)=(1,3,3,3)
T
是Ax=b的解,所以Ax=b的通解为(1,3,3,3)
T
+k(1,1,2,0)
T
,故应选(C).
转载请注明原文地址:https://www.kaotiyun.com/show/62T4777K
0
考研数学三
相关试题推荐
独立自主是中华民族的优良传统,是中国共产党、中华人民共和国立党立国的重要原则,是我们党从中国实际出发、依靠党和人民力量进行革命、建设、改革的必然结论。独立自主,就是()。
孟德斯鸠说过:自由是做法律所许可的一切事情的权利,如果一个公民能够做法律所禁止的事情,他就不再拥有自由了,因为其他人也同样有这个权利。这说明()。
“任何英雄人物的历史作用不能超出他们所处历史条件所许可的范围”,这是()。
目前,我国经济已由高速增长阶段转向高质量发展阶段,正处在转变发展方式、优化经济结构、转换增长动力的攻关期。建设现代化经济体系,是当前我国经济发展跨越由“量”到“质”关口的迫切要求,也是建设社会主义现代化国家的坚实基础。它的主线是()。
由于五四运动是在新的社会历史条件下发生的,它具有以辛亥革命为代表的旧民主主义革命所不具备的一些特点。主要是()。
党的十九届二中全会审议通过了《中共中央关于修改宪法部分内容的建议》。这次修改宪法的总体要求是,高举中国特色社会主义伟大旗帜,全面贯彻党的十九大精神,坚持以马克思列宁主义、毛泽东思想、邓小平理论、“三个代表”重要思想、科学发展观、习近平新时代中国特色社会主义
设矩阵Am×n的秩为r(A)=m<n,Em为m阶单位矩阵,下列结论中正确的是().
设α1=(2,-1,3,0),α2=(1,2,0,-2),α3=(0,-5,3,4),α4=(-1,3,t,0),则________时,α1,α2,α3,α4线性相关.
设f(x)是处处可导的奇函数,证明:对任-b>0,总存在c∈(-b,b)使得fˊ(c)=f(b)/b.
利用函数的凹凸性,证明下列不等式:
随机试题
对于钢筋直径小于或等于()的非轴心受拉构件等的接头,可采用绑扎接头.
引起机体血管升压素分泌增加的因素是()
男性尿道狭窄的原因不包括
早期釉质龋病损区分层不包括
男性,30岁,慢性肾炎6年。查血BUN18mmol/L,Cr285μmol/L,血红蛋白80g/L,尿蛋白(++),最合适的治疗为
下列为民法上的物的是()。
Itisappropriateonananniversaryofthefoundingofauniversitytoremindourselvesofitspurposes.Itisequallyappropria
Generallyspeaking,aBritishiswidelyregardedasaquiet,shyandconservativepersonwhois【C1】______onlyamongthosewithw
WhichofthefollowingisNOTthesymptomofthewoman?
Iwillnotlendthebooktoyou______youcanreturnitintime.
最新回复
(
0
)