首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设D=为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵. (1)计算PTDP,其中P=,(Ek为k阶单位矩阵); (2)利用(1)的结果判断矩阵B-CTA-1C是否为正定矩阵,并证明你的结论.
设D=为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵. (1)计算PTDP,其中P=,(Ek为k阶单位矩阵); (2)利用(1)的结果判断矩阵B-CTA-1C是否为正定矩阵,并证明你的结论.
admin
2020-03-16
95
问题
设D=
为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵.
(1)计算P
T
DP,其中P=
,(E
k
为k阶单位矩阵);
(2)利用(1)的结果判断矩阵B-C
T
A
-1
C是否为正定矩阵,并证明你的结论.
选项
答案
(1)p
T
DP=[*]; (2)矩阵B-C
T
AC是正定矩阵.证明:由(1)知D合同于矩阵M=[*],又D为正定矩阵,所以M为正定矩阵.因M为对称矩阵,故B-C
T
A
-1
C为对称矩阵.由M正定,知对m维零向量χ=(0,0,…,0)
T
及任意的n维非零向量y=(y
1
,y
2
,…,y
n
)
T
,有 [*] 故对称矩阵B=C
T
A
-1
C为正定矩阵.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/5s84777K
0
考研数学二
相关试题推荐
设有微分方程y’-2y=φ(x),其中φ(x)=在(-∞,+∞)求连续函数y(x),使其在(-∞,1)及(1,+∞)内都满足所给的方程,且满足条件y(0)=0.
求方程y(4)一y"=0的一个特解,使其在x→0时与x3为等价无穷小.
证明:(1)若函数f(x)在闭区间[a,b]上连续,则至少存在一点η∈[a,b],使得|f(x)dx=f(η)(b一a);(2)若函数φ(x)具有二阶导数,且满足φ(2)>φ(1),φ(2)>∫22φ(x)dx,则至少存在一点ξ∈(1,3),使得φ’’(
设f(x)在[0,+∞)上连续,单调不减且f(0)≥0,试证明函数F(x)=在[0,+∞)上连续且单凋不减(其中n>0).
计算下列积分(其中a为常数):
设D={(x,y)|(x一1)2+(y一1)2=2},计算二重积分。
设曲线y=xn在点(1,1)处的切线交x轴于点(ξn,0),求
设f(x)=其中g(x)有二阶连续导数,且g(0)=1,g’(0)=一1,求f’(x),并讨论f’(x)在(一∞,+∞)内的连续性.
设在区间[e,e2]上,数p,q满足条件px+q≥lnx,求使得积分I(p,q)=(px+q—lnx)dx取得最小值的p,q的值.
为清除井底的污泥,用缆绳将抓斗放入井底,抓起污泥后提出井口(如图1—3—5所示)。已知井深30m,抓斗自重400N,缆绳每米重50N.抓斗抓起的污泥重2000N,提升速度为3m/s,在提升过程中,污泥以20N/s的速率从抓斗缝隙中漏掉。现将抓起污泥的抓斗提
随机试题
台虎钳的规格是以()表示。
巴黎圣母院的建筑风格属于【】
A.大隐静脉瓣膜功能不全B.交通静脉瓣膜功能不全C.深部静脉堵塞D.动静脉瘘E.小隐静脉瓣膜功能不全大腿部绑扎止血带。运动后浅静脉曲张更明显,提示
单代号搭接网络的时间参数计算时,若某项中间工作的最早开始时间为负值,则应当()。
股指期货的交易时间是完全对应股票交易时间的。()
下列选项中属于元代建筑的是()。
于2011年9月29成功发射的中国首个空间实验室是()。
国家的实质是管理公共事务的机关。()
感知综合障碍是指病人在感知某一现实事物时,作为一个客观存在的整体来说是正确的,但对该事物的个别属性,如大小、形状、颜色、空间距离等产生与该事物不相符合的感知。根据上述定义,下列属于感知综合障碍的是()。
简述结合犯的概念和特征。
最新回复
(
0
)