首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=(aij)是三阶非零矩阵,|A|为A的行列式,Aij为aij的代数余子式.若aij+Aij=0(i,j=1,2,3),则|A|=________.
设A=(aij)是三阶非零矩阵,|A|为A的行列式,Aij为aij的代数余子式.若aij+Aij=0(i,j=1,2,3),则|A|=________.
admin
2021-01-19
73
问题
设A=(a
ij
)是三阶非零矩阵,|A|为A的行列式,A
ij
为a
ij
的代数余子式.若a
ij
+A
ij
=0(i,j=1,2,3),则|A|=________.
选项
答案
应填=1.
解析
[分析] 根据已知条件易联想到利用重要公式AA
*
=|A|E.
[详解] 由a
ij
+A
ij
=0,有A
ij
=一a
ij
(i,j=1,2,3),得A
*
=-A
T
,于是
AA
*
=-AA
T
=|A|E,
两边取行列式得 -|A|
2
=|A|
3
,解得 |A|=-1或|A|=0.
当|A|=0时,由AA
T
=|A|E=0,有A=0,与已知矛盾,所以|A|=-1.
[评注] 也可以如下证明|A|≠0:由A为非零矩阵,不妨设a
11
≠0.于是,根据行列式的按行展开定理得
|A|=a
11
A
11
+a
12
A
12
+a
13
A
13
=-(a
11
2
+a
12
2
+a
13
2
)<0.
转载请注明原文地址:https://www.kaotiyun.com/show/5l84777K
0
考研数学二
相关试题推荐
设z=arctan,求dz.
设y=f(x)为区间[0,1]上的非负连续函数.设f(x)在(0,1)内可导,且f’(x)>-,证明(1)中的c是唯一的.
(1)设y=f(χ,t),其中t是由G(χ,y,t)=0确定的χ,y的函数,且f(χ,t),G(χ,y,t)一阶连续可偏导,求(2)设z=z(χ,y)由方程z+lnz-=1确定,求
设函数f(μ)在(0,+∞)内具有二阶导数,且z=满足等式=0。验证f’’(μ)+=0;
[2010年]设,已知线性方程组AX=b存在两个不同的解.(I)求λ,a;(Ⅱ)求方程组AX=b的通解.
(2003年试题,八)设位于第一象限的曲线y=f(x)过点其上任一点P(x,y)处的法线与),轴的交点为Q,且线段PQ被x轴平分.已知曲线),=sinx在[0,π]上的弧长为l,试用l表示曲线y=f(x)的弧长s.
设y=y(x)由参数方程确定,则__________,y=y(x)在任意点处的曲率K=___________。
设f(χ)=,在χ=1处可微,则a=_______,b=_______.
设向量组α1,α2,α3为方程组AX=0的一个基础解系,下列向量组中也是方程组AX=0的基础解系的是().
(1991年)求
随机试题
工业企业产品制造成本,一般可分为______、______、______。
第一心音减弱最常见于下列哪种情况
风热感冒患者宜选用的中成药是
牙釉质和牙骨质在牙颈部比例最高的相接方式是
A.利湿药B.温热药C.破血药D.滋补药E.开窍药阴虚火旺者忌
经鞣制的整张的全粒面剖层牛皮革(已经进一步加工)
以下属于解放区人民民主政权时期宪法性文件的是()。
纯种赛马是昂贵的商品。一种由遗传缺陷引起的疾病威胁着纯种赛马,使它们轻则丧失赛跑能力,重则瘫痪甚至死亡。因此,赛马饲养者认为,一旦发现有此种缺陷的赛马应停止饲养。这种看法是片面的。因为一般地说,此种疾病可以通过饮食和医疗加以控制。另外,有此种遗传缺陷的赛马
简述知识产权的法律特征。(2013一专一53)
写邮件时,除了发件人地址之外,另一项必须要填写的是()。
最新回复
(
0
)