首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A是3阶实对称矩阵,满足A4+2A3+A2+2A=O,且秩r(A)=2,求矩阵A的全部特征值,并求秩r(A+E).
已知A是3阶实对称矩阵,满足A4+2A3+A2+2A=O,且秩r(A)=2,求矩阵A的全部特征值,并求秩r(A+E).
admin
2016-03-05
66
问题
已知A是3阶实对称矩阵,满足A
4
+2A
3
+A
2
+2A=O,且秩r(A)=2,求矩阵A的全部特征值,并求秩r(A+E).
选项
答案
设λ是矩阵A的任一特征值,α是属于特征值λ的特征向量,则Aα=λα(α≠0),于是A
n
α=λ
n
α那么用α右乘A
4
+2A
3
+A
2
+2A=0,得(λ
4
+2λ
3
+λ
2
+2λ)α=0.因为特征向量α≠0,故λ
4
+2λ
3
+λ
2
+2λ=λ(λ
3
+2λ
2
+λ+2)=λ(λ+2)(λ
2
+1)=O.由于实对称矩阵的特征值必是实数,从而矩阵A的特征值是0或一2.由于实对称矩阵必可相似对角化,且秩r(A)=r(A)=2,所以A的特征值是0,一2,一2. 因A—A,则有[*]所以r(A+E)=r(A+E)=3.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/5a34777K
0
考研数学二
相关试题推荐
设f(x)在[0,1]上有一阶连续导数,且f(0)=0,∫01xf(x)dx=0.证明:方程f’(x)=0在(0,1)内至少有一个实根;
利用变换x=-㏑t将微分方程d2y/dx2+dy/dx+e-2xy-e-3x化简为y关于t的微分方程,并求原微分方程的通解y(x);
设A,B均为4阶矩阵,它们的伴随矩阵分别为A*与B*,且r(A)=3,r(B)=4,则方程组A*B*x=0()
已知一抛物线过Ox轴上两点A(1,0)、B(3,0),记0≤x≤1时,抛物线与Ox轴、Oy轴围成的平面图形为S1,在1≤x≤3上抛物线与Ox轴围成的平面图形为S2.证明:S1与S2的面积相等;
设函数f(x)在[0,1]上连续,且∫01f(x)dx=0,∫01xf(x)dx=1,证明:(1)存在x1∈[0,1],使得|f(x1)|>4;(2)存在x2∈[0,1],使得|f(x2)|=4.
设向量组α1,α2,α3线性无关,β1不可由α1,α2,α3线性表示,而β2可由α1,α2,α3线性表示,则下列结论正确的是().
设f(x)在x=0的某邻域内有定义,则g(x)=f(x)·|x|在x=0处可导的充要条件是()
已知y1=cos2x-xcos2x,y2=sin2x-xcos2x-xcos2x是二阶常系数非齐次微分方程的两个解,则该方程是().
已知点A(2,-1,7)沿向量a=(8,9,-12)的方向得线段AB,且|AB|=34,则点B坐标为________.
随机试题
A.乳汁管B.油室C.油管D.油细胞E.树脂道当归药材粉末镜检可见
以下哪项是败血症、风湿热、化脓性疾患发热的热型
肝主疏泄的基本生理功能是
下列哪种疾病易并发肺肉质变
地下防水工程立面卷材宜采用()施工。
实行会计电算化的单位,其打印出的会计账簿需由()签字或者盖章。
在持续督导期间,财务顾问应当结合上市公司披露的季度报告、半年度报告和年度报告出具持续督导意见,并在前述定期报告披露后的()日内向上市公司所在地的中国证监会派出机构报告。
初次与某人交往,当得知他是一名大学教授时,马上断定他很有学问、有修养、性情温和、待人民主。从心理学的观点看,此种现象属于()
A、别多管闲事B、你管不过来C、他们不会听的D、我们没时间管A
Whatistheconversationmainlyabout?
最新回复
(
0
)