首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知n维向量组α1,α2,…,αn中,前n-1个线性相关,后n-1个线性无关,若令β=α1+α2+…+αn,A=(α1,α2,…,αn).试证方程组Axβ必有无穷多组解,且其任意解(α1,α2,…,αn)T中必有αn=1.
已知n维向量组α1,α2,…,αn中,前n-1个线性相关,后n-1个线性无关,若令β=α1+α2+…+αn,A=(α1,α2,…,αn).试证方程组Axβ必有无穷多组解,且其任意解(α1,α2,…,αn)T中必有αn=1.
admin
2019-12-26
90
问题
已知n维向量组α
1
,α
2
,…,α
n
中,前n-1个线性相关,后n-1个线性无关,若令β=α
1
+α
2
+…+α
n
,A=(α
1
,α
2
,…,α
n
).试证方程组Axβ必有无穷多组解,且其任意解(α
1
,α
2
,…,α
n
)
T
中必有α
n
=1.
选项
答案
由题设卢=α
1
+α
2
+…+α
n
,可得 [*] 则向量η=(1,1,…,1)
T
是方程组Ax=β的解,由此知方程组Ax=β有解,故r(A)=r(A,β). 由题设知α
1
,α
2
,…,α
n-1
线性相关,推得α
1
,α
2
,…,α
n
线性相关,而又由题设知α
2
,α
3
,…,α
n
线性无关,所以向量组α
1
,α
2
,…,α
n
的秩为n-1,从而r(A)=n-1. 综上可知,r(A)=r(A,β)=n-1<n.故方程组Ax=β有无穷多组解,并且其对应齐次线性方程组Ax=0的基础解系由n-(n-1)=1个非零解组成. 又由α
1
,α
2
,…,α
n-1
线性相关可知,存在不全为零的数λ
1
,λ
2
,…,λ
n-1
,使 λ
1
α
1
+λ
2
α
2
+…+λ
n-1
α
n-1
=0. 由此推得 [*] 所以非零向量(λ
1
,λ
2
,…,λ
n-1
,0)
T
是Ax=0的解,因而是Ax=0的一个基础解系,故Ax=β的通解 x=k(λ
1
,λ
2
,…,λ
n-1
,0)
T
+(1,1,…,1,1)
T
,其中k为任意常数, 且显见a
n
=1.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/5JD4777K
0
考研数学三
相关试题推荐
设n是正整数,则=________.
设三阶方阵A,B满足关系式A—1BA=6A+BA,且A=则B=________。
已知A=有三个线性无关的特征向量,则x=________。
二次型f(x1,x2,x3)=x12+3x22+x32+2x1x2+2x1x3+2x2x3,则f的正惯性指数为____________.
计算二重积分
已知ξ1=(-3,2,0)T,ξ2=(-1,0,-2)T是方程组的两个解,则此方程组的通解是_____.
讨论下列函数在点(0,0)处的①偏导数的存在性;②函数的连续性;③函数的可微性.
设X1,X2,…,Xn是来自标准正态总体N(0,1)的简单随机样本,其均值和方差分别为,试求:E(T)与E(T2)的值.
求下列函数的导数与微分:设求y’与y’(1).
设矩阵A=(aij)3×3,满足A*=A*,其中AT为A的伴随矩阵,AT为A的转置矩阵.若a11a12,a13为三个相等的正数,则a11为().
随机试题
请简述静态重定位和动态重定位各自的特点。
嗜睡是最轻的意识障碍,不会出现的是()
枸杞子、墨旱莲和女贞子共同的功效是
高危妊娠是指
丙公司为上市公司,增值税一般纳税企业,适用增值税税率为17%(假设没有其他税费),原材料只有甲材料一种并专门用于生产车间生产乙产品,该公司原材料按计划成本法进行日常核算。2013年12月1日,甲材料的计划单价为80元/千克,计划成本总额为250000元,材
哥特式建筑风格流行于()时期。
学校心理辅导是学校实施心理健康教育的主渠道,重点应以少数有心理问题的学生的治疗性辅导为主。()
在机器学习概念中,有监督学习、无监督学习和强化学习三大类典型方法。下列学习任务属于无监督学习的是()。
有如下程序段:intx=12;doubley=3.141593;printf("%d%8.6f",x,y);其输出结果是()。
A、 B、 C、 B
最新回复
(
0
)