首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αn是一组n维向量,证明它们线性无关的充分必要条件是:任一n维向量都可由它们线性表示.
设α1,α2,…,αn是一组n维向量,证明它们线性无关的充分必要条件是:任一n维向量都可由它们线性表示.
admin
2020-06-05
48
问题
设α
1
,α
2
,…,α
n
是一组n维向量,证明它们线性无关的充分必要条件是:任一n维向量都可由它们线性表示.
选项
答案
必要性 设a为任一n维向量.因为α
1
,α
2
,…,α
n
线性无关,而α
1
,α
2
,…,α
n/sub>,α是n+1个n维向量,是线性相关的,所以α能由α
1
,α
2
,…,α
n
线性表示,且表示式是唯一的. 充分性 已知任一n维向量都可由α
1
,α
2
,…,α
n
线性表示,故单位坐标向量组e
1
,e
2
,…,e
n
能由α
1
,α
2
,…,α
n
线性表示,于是有 n≤R(e
1
,e
2
,…,e
n
)≤R(α
1
,α
2
,…,α
n
)≤n 即R(α
1
,α
2
,…,α
n
)=n,所以α
1
,α
2
,…,α
n
线性无关.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/58v4777K
0
考研数学一
相关试题推荐
设B为n阶可逆矩阵,A是与B同阶的方阵,且A2+AB+B2=0,则()
n阶实对称矩阵A正定的充分必要条件是()
向量组α1,α2,α3,α4,α5与向量组α1,α3,α5的秩相等,则这两个向量组()
设α1,α2,α3,α4为四维非零列向量组,令A=(α1,α2,α3,α4),AX=0的通解为X=k(0,一1,3,0)T,则A*X=0的基础解系为().
设A为三阶矩阵,1,1,2是A的三个特征值,α1,α2,α3分别为对应的三个特征向量,则().
要使ξ1=(1,0,2)T,ξ2=(0,1,-1)T都是齐次线性方程组AX=0的解,只要系数矩阵为()
设向量组(Ⅰ):α1=(α11,α21,α31)T,α2=(α12,α22,α32)T,α3=(α12,α23,α33)T,向量组(Ⅱ):β1=(α11,α21,α31,α41)T,β2=(α12,α22,α32,α42)T,β3=(α12,α23,α3
设n元二次型f(x1,x2,…,xn)=XTAX,其中AT=A.如果该二次型通过可逆线性变换X=CY可化为f(y1,y2,…,yn)=YTBY,则以下结论不正确的是().
随机试题
流动资产的特点有
盆腔位阑尾急性炎症时主要症状为
()在项目周期中处于十分重要的地位。
工业企业的生产车间和作业场所的工作地点的噪声标准为()dB
()是指如果期权立即执行,买方具有正的现金流(这里暂不考虑期权费因素)。
注册资本在10亿元人民币以上的商业银行,独立董事的人数()。
天仙配:黄梅戏:春节晚会
超我包括_____________、_____________。
若有以下程序#includechar*a="you";charb[]="WelcomeyoutoChina!";main(){inti,j=0;char*p;for(i=0;b[i]!=’\0’;i++
TheCommercialRevolutionwasnotconfined,ofcourse,tothegrowthoftradeandbanking.Includedinitalsowerefundamental
最新回复
(
0
)