首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知三元二次型xTAx的平方项系数都为0,α=(1,2,-1)T满足Aα=2α。 (Ⅰ)求xTAx的表达式; (Ⅱ)求作正交变换x=Qy,把xTAx化为标准二次型。
已知三元二次型xTAx的平方项系数都为0,α=(1,2,-1)T满足Aα=2α。 (Ⅰ)求xTAx的表达式; (Ⅱ)求作正交变换x=Qy,把xTAx化为标准二次型。
admin
2018-11-16
32
问题
已知三元二次型x
T
Ax的平方项系数都为0,α=(1,2,-1)
T
满足Aα=2α。
(Ⅰ)求x
T
Ax的表达式;
(Ⅱ)求作正交变换x=Qy,把x
T
Ax化为标准二次型。
选项
答案
(Ⅰ)设A=[*],则条件Aα=2α即 [*] 得2a-b=2,a-c=4,b+2c=-2,解出a=b=2,c=-2。此二次型为4x
1
x
2
+4x
1
x
3
-4x
2
x
3
。 (Ⅱ)先求A的特征值 [*] 于是A的特征值就是2,2,-4,再求单位正交特征向量组:属于2的特征向量是(A-2E)x=0的非零解。[*]得(A-2E)x=0的同解方程组:x
1
- x
2
-x
3
=0。 显然β
1
=(1,1,0)
T
是一个解,设第二个解为β
2
=(1,-1,c)
T
(这样的设定保证了两个解是正交的!),代入方程得c=2,得到属于特征值2的两个正交的特征向量β
1
,β
2
,再把它们单位化:记[*],属于-4的特征向量是(A+4E)x=0的非零解。求出β
3
=(1,-1,-1)
T
是一个解,单位化:记[*],则η
1
,η
2
,η
3
是A的单位正交特征向量组,特征值依次为2,2,-4。作正交矩阵Q=(η
1
,η
2
,η
3
),则Q
-1
AQ是对角矩阵,对角线上的元素为2,2,-4。作正交变换x=Qy,它把f(x
1
,x
2
,x
3
)化为2y
1
2
+2y
2
2
-4y
3
2
。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/58W4777K
0
考研数学三
相关试题推荐
设有三个线性无关的特征向量.求a;
某流水线上产品不合格的概率为p=,各产品合格与否相互独立,当检测到不合格产品时即停机检查,设从开始生产到停机检查生产的产品数为X,求E(X)及D(X).
设随机变量(X,Y)的联合密度为f(x,y)=求:
设X~N(μ,σ2),其分布函数为F(x),对任意实数a,讨论F(一a)+F(a)与1的大小关系.
设随机变量(X,Y)的分布函数为F(x,y),用它表示概率P(一X<a,Y<y),则下列结论正确的是().
设n阶实对称矩阵A的秩为r,且满足A2=A(A称为幂等阵).求:二次型XTAX的标准形;
试求心形线x=acos3θ,y=asin3θ与两坐标轴所围成的平面图形绕y轴旋转一周所得旋转体的体积.
设z=f(x,y),x=g(y,z)+其中f,g,φ在其定义域内均可微,求
设函数y=y(x)由方程ylny—x+y=0确定,试判断曲线y=y(x)在点(1,1)附近的凹凸性。
已知{an}是单调增加且有界的正数列,证明:级数收敛.
随机试题
ARDS的主要病理改变是()
CharacteristicsofAmericanCultureI.PunctualityA.Goingtothetheaterbe【T1】______twentyminutesprior
行政权力的根本来源是()
影响健康的环境因素()。
男性,30岁,有支气管哮喘病史23年,长期口服氨茶碱控制。6小时前出现气喘,大汗淋漓,到卫生所给予静脉滴注氨茶碱,效果不佳。体检:嗜睡,胸腹矛盾呼吸,双肺未闻及哮鸣音,心率126次/分,节律不齐。动脉血气示:pH7.30,PaO245mmHg,PaCO26
有关加液研磨法的叙述错误的是
沉入桩法施工时,在一个墩、台桩基中,同一水面内的桩接头数不得超过桩基总数的(),但采用法兰盘按等强度设计的接头,可不受此限制。
下列项目中,不应计入当期损益的有()。
某公司主要从事建筑工程机械的生产制造,2008年发生以下业务:(1)签订钢材采购合同一份,采购金额8000万元;签订以货换货合同一份,用库存的3000万元A型钢材换取对方相同金额的B型钢材;签订销售合同一份,销售金额15000万元。(2)公司作为受托方
设f(x)连续,且f’(0)>0,则存在δ>0,使得().
最新回复
(
0
)