首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×n阶矩阵,B是n×m阶矩阵,则( ).
设A是m×n阶矩阵,B是n×m阶矩阵,则( ).
admin
2022-04-02
30
问题
设A是m×n阶矩阵,B是n×m阶矩阵,则( ).
选项
A、当m>n时,必有|AB|≠0
B、当m>n时,必有|AB|=0
C、当n>m时,必有|AB|≠0
D、当n>m时,必有|AB|=0
答案
B
解析
AB为m阶矩阵,因为r(A)≤min{m,n},r(B)≤min{m,n},且r(AB)≤min{r(A),r(B)},所以r(AB)≤rain{m,n),故当m>n时,r(AB)≤n<m,于是|AB|=0,选(B).
转载请注明原文地址:https://www.kaotiyun.com/show/52R4777K
0
考研数学三
相关试题推荐
已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明:(I)存在ξ∈(0,1),使得f(ξ)=1-ξ;(Ⅱ)存在两个不同的点η,ζ∈(0,1),使得fˊ(η)fˊ(ζ)=1.
设X1,X2,…,Xn(n>2)为来自总体N(0,σ2)的简单随机样本,其样本均值为(I)求Yi的方差D(Yi),i=1,2,…,n;(Ⅱ)求Y1与Yn的协方差cov(Y1,Yn);(Ⅲ)若c(Y1+Yn)2是σ2的无偏估计量,求常数c.
设向量组α1,…,αn为两两正交的非零向量组,证明:α1,…,αn线性无关,举例说明逆命题不成立.
设f(x),g(x)在[a,b]上连续,证明:存在ξ∈(a,b),使得f(ξ)∫ξbg(z)dx=g(ξ)∫aξf(x)dx.
利用柯西审敛原理证明调和级数发散.
向量组β1,β2,…,βt可由向量组α1,α2,…,αs线性表出,设表出关系为[β1,β2,…,βt]=[α1,α2,…,αs][α1,α2,…,αs]C若α1,α2,…,αs线性无关.证明:r(β1,β2,…,βt)=r(C).
已知下列非齐次线性方程组:求解方程组(I),用其导出组的基础解系表示其通解;
设向量α=[a1,a2,…,an]T,β=[b1,b2,…,bn]T都是非零向量,满足aTβ=0,记n阶矩阵A=αβT.求A2;
设A,B为三阶矩阵,且特征值均为-2,1,1,以下命题:(1)A~B;(2)A,B合同;(3)A,B等价;(4)|A|=|B|中正确的命题个数为().
设A是n阶矩阵,下列命题错误的是().
随机试题
主要是保证从多种方案中选出一个正确的经营战略决策方案的过程是()
内部招聘的优点是()
此时应高度怀疑产生原因是
根据上述资料,初步诊断首选的处理方法
女性,23岁,在输血后出现咖啡色尿,尿常规:蛋白++++,隐血+++++,其发生蛋白尿的类型为
可行的陆生植被现状调查方法有()。
教学目标必须严格遵守其原则性,有的教师因校、因课、因班制宜,根据具体教学实际编制教学目标,在内容和水平上有一定的弹性,留有余地,这种做法是错误的。()
如下图所示,△ABC中DE∥BC,且BO和CO分别是∠ABC和∠ACB的角平分线。已知AB=25.4cm,BC=24.5cm,AC=20cm。问△ADk的周长是多少?()
实现中华民族的伟大复兴和社会主义现代化,是坚持和发展中国特色社会主义的
下列程序的运行结果是______。#defineP(A)printf("%d",a)main(){intj,a[]={1,2,3,4,5,6,7},i=5;for(j=3;j>1;j--){switch(j){case
最新回复
(
0
)