首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b) 一f(a)=f’(ξ)(b一a). (Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且f’(x)=A,则f+’(0
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b) 一f(a)=f’(ξ)(b一a). (Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且f’(x)=A,则f+’(0
admin
2017-04-24
65
问题
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b) 一f(a)=f’(ξ)(b一a).
(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且
f’(x)=A,则f
+
’
(0)存在,且f
x
’
(0)=A.
选项
答案
(Ⅰ)取F(x)=f(x)一[*] 由题意知F(x)在[a,b]上连续,在(a,b)内可导,且 [*] 根据罗尔定理,存在ξ∈(a,b),使得F’(ξ)=[*]=0,即 f(b)一f(a)=f’(ξ)(b一a). (Ⅱ)对于任意的t∈(0,δ),函数f(x)在[0,t]上连续,在(0,t)内可导,由右导数定义及拉格朗日中值定理 [*] 故f
+
’
(0)存在,且f
+
’
(0)=A.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/4yt4777K
0
考研数学二
相关试题推荐
设f(x)在[a,b]上二阶可导且f"(x)>0,证明:f(x)在(a,b)内为凹函数.
设曲线y=f(x)=(x3-x2)/(x2-1),则().
求差分方程yx+1+2yx=x2+4x的通解。
设非负函数y=y(x)(x≥0)满足微分方程xy"-y’+2=0,当曲线y=y(x)过原点时,其与直线x=1及y=0围成平面区域的面积为2,求D绕y轴旋转所得旋转体体积。
求方程的通解。
微分方程y’+ytanx=cosx的通解为________。
求关于给定的原始式所满足的微分方程。y=Ax2+Bx+C,其中A,B,C为任意常数。
设u=e-xsinx/y,则э2u/эxэy在点(2,1/π)处的值________。
已知二次型f(x1,x2,x3)=4x2-3x3+4x1x2-4x1x3+8x2x3.用正交变换把二次型f化为标准形,并写出相应的正交矩阵.
二次型f(x1,x2,x3)=(x1+x2)2+(x2-x3)2+(x3+x1)2。的秩为_________.
随机试题
2014年末,某省公路里程172167千米,同比增长2.8%,其中,高速公路4237千米,同比增长3.3%。国家铁路正线延展里程和营业里程分别为15060千米和9351千米,分别同比增长一0.28%,和0.23%。地方铁路正线延展里程和营业里程分别为180
Enteringcollegeislikestartinganew【B1】______ofyourlife.Everythingisnew.Everyoneis【B2】______.Untilyougettocolleg
患者,男,48岁。在县医院被诊断为肝癌后,神情呆滞,多次要求家人带其到省城大医院检查确认。此时患者所处的心理反应阶段是
患者,女,36岁。长期吸烟,患有滴虫性阴道炎。近来月经不规则,前来咨询避孕措施,护士应指导其选用()。
企业安全生产管理机构指的是生产经营单位内设的专门负责()的机构。
现金折扣和销售折让,均应在实际发生时计入当期财务费用。()
行政主体是指享有行政职权,能以自己的名义行使国家行政职权,做出影响行政相对人权利义务的行政行为,并能由其本身对外承担行政法律责任的组织。根据上述定义,下列所述属于行政主体的是( )。
世界卫生组织报告说,全球每年有数百万人死于各种医疗事故。在任何一个国家的医院,医疗事故致死的概率不低于0.3%。因此,即使是癌症患者也不应当去医院治疗,因为去医院治疗会增加死亡的风险。为了评估上述论证,对以下哪个问题的回答最为重要?
There’ssimplepremisebehindwhatLarryMyersdoesforaliving:Ifyoucansmellit,youcanfindit.Myersisthefound
Menhavetraveledeversincetheyflintappearedonearth.Inprimitivetimestheydidnottravelforpleasurebutto【C1】____
最新回复
(
0
)