首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量X~B(1,),Y~E(1),且X与Y相互独立.记Z=(2X-1)Y,(Y,Z)的分布函数为F(y,z). 求:(Ⅰ)Z的概率密度fZ(z); (Ⅱ)F(2,-1)的值.
设随机变量X~B(1,),Y~E(1),且X与Y相互独立.记Z=(2X-1)Y,(Y,Z)的分布函数为F(y,z). 求:(Ⅰ)Z的概率密度fZ(z); (Ⅱ)F(2,-1)的值.
admin
2018-11-23
108
问题
设随机变量X~B(1,
),Y~E(1),且X与Y相互独立.记Z=(2X-1)Y,(Y,Z)的分布函数为F(y,z).
求:(Ⅰ)Z的概率密度f
Z
(z);
(Ⅱ)F(2,-1)的值.
选项
答案
(Ⅰ)F
Z
(z)=[*]P{-Y≤z}+[*]P{Y≤z}=[*]P{Y≥z}+[*]P{Y≤z} [*][1-P{Y<-z}]+[*]P{y≤z}=[*][1-P{y≤-z}+P{Y≤z}] =[*][1-F
Y
(-z)+F
Y
(z)]. 于是f
Z
(z)=F′
Z
(z)=[*][f
Y
(-z)+f
Y
(z)]=[*]e
-|z|
,-∞<z<+∞. (Ⅱ)F(2,-1)=P{Y≤2,Z≤-1}=P{Y≤2,(2X-1)Y≤-1} =P{X=0}P{Y≤2,(2X-1)Y≤-1|X=0}+ P{X==1}P{Y≤2,(2X-1)Y≤-1|X=1} =[*]P{Y≤2,-Y≤-1|X=0}+[*]P{Y≤2,Y≤-1|X=1} =[*]P{Y≤2,-Y≤-1}+[*]P{Y≤2,Y≤-1} =[*]P{1≤Y≤2}+[*]P{Y≤-1}=[*]P{1≤Y≤2}=[*](e
-1
-e
-2
).
解析
转载请注明原文地址:https://www.kaotiyun.com/show/4nM4777K
0
考研数学一
相关试题推荐
设f(x)是以ω为周期的连续函数,证明:一阶线性微分方程y′+ky=f(x)存在唯一的以ω为周期的特解,并求此特解,其中k≠0为常数.
设f(x)在闭区间[-1,1]上具有三阶连续导数,且f(-1)=0,f(1)=1,f’(0)=0.证明:在[-1,1]内存在ξ,使得f’’(ξ)=3.
假设一设备开机后无故障工作的时间服从指数分布,平均无故障工作的时间(EX)为5h,设备定时开机,出现故障时自动关机,而在无故障的情况下工作2h便关机,试求该设备每次开机无故障工作的时间Y的分布函数F(y).
设F(x)为f(x)的原函数,且当x≥0时,f(x)F(x)=,又F(0)=1,F(x)>0,求f(x).
设随机变量X的概率密度为,-∞<x<+∞,求:(1)常数C;(2)X的分布函数F(x)和P{0≤X≤1};(3)Y=e-|X|的概率密度fY(y).
设事件A与B相互独立,已知它们都不发生的概率为0.16,又知A发生B不发生的概率与B发生A不发生的概率相等,则A与B都发生的概率是__________.
设二维随机变量(X,Y)在G=上服从均匀分布,则条件概率=_______
若在区间(0,1)上随机地取两个数u,ν,则关于x的一元二次方程x2一2νx+u=0有实根的概率为________.
设随机变量X服从正态分布N(μ,σ2),已知P{X≤2}=0.062,P{X≥9}=0.025,则概率P{|X|≤4}=_______。(Ф(1.54)=0.938,Ф(1.96)=0.975)
随机试题
头部外伤后慢性硬脑膜下血肿的时限,定义为
关于鼻出血的护理下列哪项不妥()
内痔好发部位为截石位的
在招标投标过程中有何不妥之处?说明理由。投标书在哪些情况下可作为废标处理?
与企业甲签订的运输合同,应缴纳的印花税()元。该公司将已经贴用的印花税票揭下来重新使用,税务机关应()。
“园林巧于用借”,颐和园借景玉泉山及玉峰塔是邻借,借空中的飞鸟是仰借,借池塘中的鱼是俯借。()
元认知策略包括______监视策略和调节策略。
《中华人民共和国选举法》规定,在直接选举中,人民代表大会正式代表候选人名单应当在选举之前公布。下列选项中,______是正确的公布日期。
根据刑法,下列哪些说法错误?()
A、Mostpeopleareofsimilarintelligenceregardlessofbackground.B、Peopleofthesamebloodtypehavesimilarintelligence.C
最新回复
(
0
)