首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(—1,1)内具有二阶连续导数且f"(x)≠0。证明: (Ⅰ)对于任意的x∈(—1,0)∪(0,1),存在唯一的θ(x)∈(0,1),使f(x)=f(0)+xf’(θ(x)x)成立;
设f(x)在(—1,1)内具有二阶连续导数且f"(x)≠0。证明: (Ⅰ)对于任意的x∈(—1,0)∪(0,1),存在唯一的θ(x)∈(0,1),使f(x)=f(0)+xf’(θ(x)x)成立;
admin
2017-12-29
61
问题
设f(x)在(—1,1)内具有二阶连续导数且f"(x)≠0。证明:
(Ⅰ)对于任意的x∈(—1,0)∪(0,1),存在唯一的θ(x)∈(0,1),使f(x)=f(0)+xf’(θ(x)x)成立;
选项
答案
(Ⅰ)由拉格朗日中值定理,对任意x∈(—1,1),x≠0,存在θ∈(0,1)使f(x)=f(0)+xf’(θx),(θ与x有关)。 又由f"(x)连续且f"(x)≠0,故f"(x)在(—1,1)不变号,所以f’(x)在(—1,1)严格单调,θ唯一。 (Ⅱ)由(θ)中的式子,则有 [*] 由上式可得θ的表达式,并令x→0取极限得 [*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/4mX4777K
0
考研数学三
相关试题推荐
已知矩阵相似.求x与y;
变换下列二次积分的积分次序:
设y(x)=求(2x)2n一(|x|<1)的和函数及级数的值.
设φ(x)是以2π为周期的连续函数,且Ф(x)=φ(x),Ф(0)=0.求方程y’+ysinx=φ(x)ecosx的通解;
z’x(x0,y0)=0和z’y(x0,y0)=0是函数z=z(x,y)在点(x0,y0)处取得极值的()
微分方程y"+2y’+2y=e-xsinx的特解形式为()
假设二维随机变量(X,Y)在矩形区域G={(x,y)|0≤x≤2,0≤y≤1}上服从均匀分布,记(I)求U和V的联合分布;(Ⅱ)求U和V的相关系数ρ.
设f(x)在点x=a可导,则极限()=f′(a).
设函数f(x,y)可微,且对任意x,y都有<0,则使不等式f(x1,y1)<f(x2,y2)成立的一个充分条件是()
设x=rcosθ,y=rsinθ,将极坐标下的累次积分转换成直角坐标系下的累次积分:dθ∫12cosθf(rcosθ,rsinθ)rdr=_________.
随机试题
决策者有较高的模糊耐受性和很强的任务和技术取向,这种决策风格是()。
QSC&Vhasbeenthefoundationthat【36】McDonald’ssuccess.QSC&V【37】theMcDonald’s【38】ofQuality,Service,Cleanliness,andValue
A.球部尿道损伤B.膜部尿道损伤C.膀胱损伤D.输尿管损伤E.肾损伤骑跨伤多引起
A.高压变压器B.自耦变压器C.灯丝变压器D.高压交换闸E.高压硅整流器不属于高压部件的是
男性,57岁。3个月来腹胀、水肿,1周来加重伴腹痛。20年前曾发现HBsAg(+)。查体:可见肝掌及蜘蛛痣。蛙状腹,肝未及,脾肋下4cm,全腹压痛,无明显反跳痛,移动性浊音阳性。化验:血白蛋白24g/L,血球蛋白31g/L,血钾3.8mmol/L,血钠13
(2009)以下哪项措施不能有效减小管道中流体的流动阻力?()
P企业、Q企业在L地签订合同,将P企业在甲地的店面出租给Q企业。后因Q企业未按期支付租金,双方发生争议。P企业到Q企业所在地人民法院起诉后,又到甲地人民法院起诉。甲地人民法院于10月15日予以立案,Q企业所在地人民法院于10月19日予以立案。下列法院中,(
什么是免责?免责有哪些情形?
有如下程序:#includeusingnamespacestd;classTest{public:Test(){}Test(constTest&t){cout
Therewasatimewhen,ifaladygotontoacrowdedbusortrain,agentlemanwould【B1】______standupandofferherhisseat.
最新回复
(
0
)