首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αs,β为n维向量,则下列结论正确的是( ).
设α1,α2,…,αs,β为n维向量,则下列结论正确的是( ).
admin
2021-07-27
57
问题
设α
1
,α
2
,…,α
s
,β为n维向量,则下列结论正确的是( ).
选项
A、若β不能被向量组α
1
,α
2
,…,α
s
线性表示,则α
1
,α
2
,…,α
s
必线性无关
B、若向量组α
1
,α
2
,…,α
s
,β线性相关,则β可以被向量组α
1
,α
2
,…,α
s
线性表示
C、β可以被向量组α
1
,α
2
,…,α
s
的部分向量线性表示,则β可以被α
1
,α
2
,…,α
s
线性表示
D、β可以被向量组α
1
,α
2
,…,α
s
线性表示,则β可以被其任何一个部分向量组线性表示
答案
C
解析
①若β不能被向量组α
1
,α
2
,…,α
s
线性表示,则r(α
1
,α
2
,…,α
s
,β)=r(α
1
,α
2
,…,α
s
)+1,至于α
1
,α
2
,…,α
s
,β是否线性无关,取决于α
1
,α
2
,…,α
s
是否线性无关,由于题中未明示,故(A)不正确.
②若向量组α
1
,α
2
,…,α
s
,β线性相关,则其中至少有一个向量可以被其余向量线性表示.但“有一个”未必一定是β,故(B)不正确.
③β可以被向量组α
1
,α
2
,…,α
s
的部分向量线性表示,则也一定可以被α
1
,α
2
,…,α
s
线性表示,事实上,若β可以被部分组α
1
,α
2
,…,α
r
(r<s)线性表示,有β=k
1
α
1
+k
2
α
2
+…+k
r
α
r
,也有β=k
1
α
1
+k
2
α
2
+…+k
r
α
r
+0·α
r+1
+…+0·α
s
,故(C)正确.
④β可以被向量组α
1
,α
2
,…,α
s
线性表示,但不一定被其任何一个部分向量组线性表示,如β=[2,0]
T
可以被向量组α
1
=[1,0]
T
,α
2
=[0,2]
T
线性表示,但不能由部分组α
2
=[0,2]
T
线性表示,故(D)不正确.
转载请注明原文地址:https://www.kaotiyun.com/show/4hy4777K
0
考研数学二
相关试题推荐
设α1,α2,…,αm与β1,β2,…,βs为两个n维向量组,且r(α1,α2,…,αm)=r(β1,β2,…,βs)=r,则().
设n阶矩阵A的伴随矩阵A*≠O,且非齐次线性方程组AX=b有两个不同解η1,η2,则下列命题正确的是().
设A是三阶矩阵,其特征值是1,3,一2,相应的特征向量依次是α1,α2,α3,若P=(α1,2α3,一α2),则P一1AP=()
设α1,α2,α3是四元非齐次线性方程组Ax=b的三个解向量,且r(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T,C表示任意常数,则线性方程组Ax=b的通解x为
设A是m×n矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是()
设有直线则L1与L2的夹角为()
下列行列式的值为n!的是().
设为正项级数,则下列结论正确的是()
设α0是A的特征向量,则α0不一定是其特征向量的矩阵是
随机试题
关于砌筑沟道施工的说法,正确的有()。
地面水自净作用中最重要和最活跃的净化是
A.CEAB.p-ANCAC.c-ANCAD.ASCA
A、鞣质B、胆汁酸C、马钱子碱D、银杏内酯E、补骨脂内酯属于香豆素类的是
关于软膏剂质量的正确表述为
标线长度的允许偏差为( )mm。
使用中小型计算机和网络化会计软件的单位,应设立电算化主管岗位。()
某企业2019年年初实际占地面积共为20000平方米,其中企业子弟学校面积2000平方米,医院占地1000平方米,7月底经批准新占用耕地15000平方米用于扩大生产经营。企业所在地城镇土地使用税单位税额每平方米3元,耕地占用税单位税额为每平方米25元。该企
正确的追求,促使人们在不甘平庸,开拓发展的同时,不断为自己寻找新的定位,以创新的意识,在他人习以为常的地方,发现新生的事物;在他人熟视无睹的时候,提出独特的见解。英国诗人华兹华斯有言:“一个崇高的目标,只要不渝地追求,就会成为壮举;在它纯洁的目光里,一切美
资产证券化
最新回复
(
0
)