首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶反对称矩阵。 证明:A可逆的必要条件是n为偶数;当n为奇数时,A*是对称矩阵。
设A是n阶反对称矩阵。 证明:A可逆的必要条件是n为偶数;当n为奇数时,A*是对称矩阵。
admin
2019-03-23
71
问题
设A是n阶反对称矩阵。
证明:A可逆的必要条件是n为偶数;当n为奇数时,A
*
是对称矩阵。
选项
答案
根据反对称矩阵的定义:A
T
= —A,则 |A|=|A
T
|=|—A|=(—1)
n
|A|, 即[1—(—1)
n
]|A|=0。 若n=2k+1,必有|A|=0,此时A不可逆。所以A可逆的必要条件是n为偶数。 因为A
T
= —A,则由(A
*
)
T
=(A
T
)
*
有 (A
*
)
T
=(A
T
)
*
=(—A)
*
。 又因(lA)
*
=l
n—1
A
*
,故当n=2k+1时,有 (A
*
)
T
=(—1)
2k
A
*
=A
*
, 即A
*
是对称矩阵。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/4TV4777K
0
考研数学二
相关试题推荐
设f(x)在[x1,x2]可导,0<x1<x2,证明:ξ∈(x1,x2)使得
设a,b,c为实数,求证:曲线y=ex与y=axx+bx+c的交点不超过三个.
设z(x,y)满足求z(x,y).
设4阶矩阵A=(α,γ1,γ2,γ3),B=(β,γ1,γ2,γ3),|A|=2,|B|=3,求|A+B|.
设A与B分别是m,n阶矩阵,证明
设A,B都是n阶矩阵,E-AB可逆.证明E-BA也可逆,并且(E-BA)-1=E+B(E-AB)-1A.
设A和B都是m×n实矩阵,满足r(A+B)=n,证明ATA+BTB正定.
设单位质点在水平面内作直线运动,初速度v|t=0=v0.已知阻力与速度成正比(比例系数为1),问t为多少时此质点的速度为v0/3?并求到此时刻该质点所经过的路程.
设随机变量(X,Y)的概率密度为f(x,y)=,求(1)系数k;(2)边缘概率密度;(3)X和Y是否独立.
现有四个向量组①(1,2,3)T,(3,一1,5)T,(0,4,一2)T,(1,3,0)T;②(a,1,6,0,0)T,(c,0,d,2,0)T,(e,0,f,0,3)T;③(a,1,2,3)T,(b,1,2,3)T,(c,3,4,5)T,(d,0,
随机试题
急性感染性多发性神经根炎危及生命的原因是
濡脉的主病为
道路基层是路面结构中的()。
我国现有的()等都应属于商业银行。
我国公务员制度的特色有()。
教学原则
下列属于通知或警告用户的命令是
已知A=10111IIOB,B=AEH,C=184D,关系成立的不等式是
•Youwillhearfiveshortrecordings.Fivepeoplearetalkingabouttheircorporateculture.•Foreachrecording,decidewhatea
PedestrianSafetyRoadsaredangerousplacesforpeopleonfoot./So,itisimportantforpedestrianstobeaware/thattr
最新回复
(
0
)