首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知函数z=f(x,y)的全微分dz=2xdx一2ydy,并且f(1,1)=2。求f(x,y)在椭圆域D={(x,y)|}上的最大值和最小值。
已知函数z=f(x,y)的全微分dz=2xdx一2ydy,并且f(1,1)=2。求f(x,y)在椭圆域D={(x,y)|}上的最大值和最小值。
admin
2018-12-19
101
问题
已知函数z=f(x,y)的全微分dz=2xdx一2ydy,并且f(1,1)=2。求f(x,y)在椭圆域D={(x,y)|
}上的最大值和最小值。
选项
答案
根据题意可知[*] 于是f(x,y)=x
2
+C(y),且C’(y)=一2y,因此有C(y)=一y
2
+C,由f(1,1)=2,得C=2,故f(x,y)=x
2
一y
2
+2。 令[*]得可能极值点为x=0,y=0。且 [*] △=B
2
一AC=4>0,所以点(0,0)不是极值点,也不可能是最值点。 下面讨论其边界曲线[*]上的情形,令拉格朗日函数为 F(x,y,λ)=f(x,y)+λ(x
2
+[*]—1), 求解 [*] 得可能极值点x=0,y=2,λ=4;x=0,y=一2,λ=4;x=1,y=0,λ=一1;x=一1,y=0,λ=一1。 将其分别代入f(x,y)得,f(0,±2)=一2,f(±1,0)=3,因此z=f(x,y)在区域D={(x,y)|[*]}内的最大值为3,最小值为一2。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/3kj4777K
0
考研数学二
相关试题推荐
已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明:存在ξ∈(0,1),使得f(f)=1一ξ;
设函数y=f(x)由方程y一x=ex(1-y)确定,则=________________.
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0.证明对任何a∈[0,1],有∫0ag(x)f’(x)dx+∫01f(x)g’(x)dx≥f(a)g(1).
一容器的内侧是由图中曲线绕y轴旋转一周而成的曲面,该曲线由x2+y2=连接而成(如图3—7).求容器的容积;
设A是三阶实对称矩阵,存在可逆矩阵P=,使得P-1AP=,又α=且A*=μα.求|A*+3E|.
(2014年)设A=,E为3阶单位矩阵.(Ⅰ)求方程组Aχ=0的一个基础解系;(Ⅱ)求满足AB=E的所有矩阵B.
(2000年)已知向量组具有相同的秩,且β3可由α1,α2,α3线性表示,求a、b的值.
(2015年)设矩阵,若集合Ω={1,2}则线性方程组Aχ=b有无穷多解的充分必要条件为【】
(2011年)设A=(α1,α2,α3,α4)是4阶矩阵,A*为A的伴随矩阵.若(1,0,1,0)T是方程组Aχ=0的一个基础解系,则A*χ=0的基础解系可为【】
(2006年)设函数y=f(χ)具有二阶导数,且f′(χ)>0,f〞(χ)>0,△χ为自变量χ在点χ0处的增量,△y与dy分别为f(χ)在点χ0处对应的增量与微分,若△χ>0,则【】
随机试题
在企业有些方面处于劣势时,企业也可能表现出良好的态势。()
()是钳子工具。
A.易发生心肌损害B.基础代谢率正常C.基础代谢率略增高,甲状腺摄131I量显著降低D.基础代谢率降低,甲状腺摄131I量降低继发性甲状腺功能亢进
A.重浊B.干涩C.易流行D.升散E.收引湿邪的特性是
本票和汇票的区别主要是()。
下列关于道德的约束性,说法错误的是()。
以下关于个人贷款的说法中,正确的有()。
设A为n阶实矩阵,AT是A的转置矩阵,则对于线性方程组(I):AX=0和(Ⅱ):ATAX=0,必有
[2008年MBA真题]水泥的原料是很便宜的,像石灰石和随处可见的泥土都可以用作水泥的原料。但水泥的价格会受石油价格的影响,因为在高温炉窑中把原料变为水泥要耗费大量的能源。基于上述断定最有可能得出以下哪项结论?
将考生文件夹下COOK、FEW文件夹中的ARAD.WPS文件复制到考生文件夹下ZUME文件夹中。
最新回复
(
0
)