首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(95年)已知二次型f(χ1,χ2,χ3)=4χ22-3χ32+4χ1χ2-4χ1χ3+8χ2χ3. (1)写出二次型.厂的矩阵表达式; (2)用正交变换把二次型f化为标准形,并写出相应的正交矩阵.
(95年)已知二次型f(χ1,χ2,χ3)=4χ22-3χ32+4χ1χ2-4χ1χ3+8χ2χ3. (1)写出二次型.厂的矩阵表达式; (2)用正交变换把二次型f化为标准形,并写出相应的正交矩阵.
admin
2021-01-25
104
问题
(95年)已知二次型f(χ
1
,χ
2
,χ
3
)=4χ
2
2
-3χ
3
2
+4χ
1
χ
2
-4χ
1
χ
3
+8χ
2
χ
3
.
(1)写出二次型.厂的矩阵表达式;
(2)用正交变换把二次型f化为标准形,并写出相应的正交矩阵.
选项
答案
(1)f的矩阵表达式为 f(χ
1
,χ
2
,χ
3
)=(χ
1
,χ
2
,χ
3
)[*] (2)f的矩阵为 [*] 由A的特征方程 [*] 得A的全部特征值为λ
1
=1,λ
2
=6,λ
3
=-6.计算可得,对应的特征向量分别可取为 α
1
=(2,0,一1)
T
,α
2
=(1,5,2)
T
,α
3
=(1,-1,2)
T
对应的单位特征向量为 [*] 由此可得所求的正交矩阵为 P=[β
1
β
2
β
3
]=[*] 对二次型f作正交变换 [*] 则二次型f可化为如下标准形:f=y
1
2
+6y
2
2
-6y
3
2
.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/2ux4777K
0
考研数学三
相关试题推荐
求方程y’’+2my’+n2y=0满足初始条件y(0)=a,y’(0)=b的特解,其中m>n>0,a,b为常数,并求
[2016年]设二维随机变量(X,Y)在区域D={(x,y)|0<x<1,}上服从均匀分布,令求Z=U+X的分布函数FZ(z).
(99年)设有微分方程y′-2y=φ(χ),其中φ(χ)=.试求在(-∞,+∞)内的连续函数y=y(χ),使之在(-∞,1)和(1,+∞)内都满足所给方程,且满足条件y(0)=0.
设α,β,γ1,γ2,γ3都是4维列向量,且|A|=|α,γ1,γ2,γ3|=4,|B|=|β,2γ1,3γ2,γ3|=21,则|A+B|=______.
设A*是A的伴随矩阵,则(A*)-1=___________.
设曲线y=f(x)与y=在原点处有相同切线,则=_________.
计算二重积分,其中D={(x,y)|x2≤y≤1}.
设α,β为四维非零的正交向量,且A=αβT,则A的线性无关的特征向量个数为().
设f(x)二阶可导,且f(0)=0,令g(x)=(Ⅰ)确定a的取值,使得g(x)为连续函数;(Ⅱ)求g’(x)并讨论函数g’(x)的连续性.
设X1,X2,…,Xn相互独立,且Xi(i=1,2,…)服从参数为λ(>0)的泊松分布,则下列选项正确的是()
随机试题
目前确定换油周期有哪三种方法?
在肉汤中培养24小时后培养液变清的是
组成药物中含有炮姜、川芎的方剂是
按照通行的会计准则,()不列入银行资产负债表内,不影响当期银行资产负债总额,但构成银行的或有资产或有负债。
商业银行由于不能根据客户需求的改变而创造需求,丧失了宝贵的客户资源,这属于哪种类别的战略风险()
下列关于资产负债表中资产项目的填列说明,正确的是()。
Sixteenyearsago,EileenDoyle’shusband,anengineer,tookhisfourchildrenupforanearlymorningcupoftea,packedasmal
①英国科学家彼得·巴罗搜集了大量以豆类植物为主的叶子运动数据,随后,他将这些数据与其记录地点,以及当时的月球引力情况进行对比与分析②不过,科学家发现,在黑暗中生长的植物也拥有相似的周期变化规律,这或许是植物体内的“生物钟”在起作用③合欢等植物的叶子会在
党的十九大报告指出,加快实施创新驱动发展战略。深入实施科教兴国战略、人才强国战略、创新驱动发展战略,努力实现到2035年跻身()
(1)Humansaredamagingtheplanetatanunprecedentedrateandraisingrisksofabruptcollapsesinnaturematcouldspurdiseas
最新回复
(
0
)