首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
若y1,y2是二阶非齐次线性微分方程(1)的两个不同的特解,证明: y〞+P(x)yˊ+Q(x)y=f(x) (1) (1)y1,y2是线性无关的; (2)对任意实数λ,y=λy1+(1-λ)y2是方程(1)的解.
若y1,y2是二阶非齐次线性微分方程(1)的两个不同的特解,证明: y〞+P(x)yˊ+Q(x)y=f(x) (1) (1)y1,y2是线性无关的; (2)对任意实数λ,y=λy1+(1-λ)y2是方程(1)的解.
admin
2020-03-10
84
问题
若y
1
,y
2
是二阶非齐次线性微分方程(1)的两个不同的特解,证明:
y〞+P(x)yˊ+Q(x)y=f(x) (1)
(1)y
1
,y
2
是线性无关的;
(2)对任意实数λ,y=λy
1
+(1-λ)y
2
是方程(1)的解.
选项
答案
证: 设微分方程为y〞+P(x)yˊ+Q(x)y=f(x). (1)因为y
1
,y
2
是方程的特解,则有 y〞
1
+P(x)yˊ
1
+Q(x)y
1
=f(x), ① y〞
2
+P(x)yˊ
2
+Q(x)y2=f(x), ② 假定y
1
,y2线性相关,则y
1
/y
2
=k,k为常数,将y
1
=ky
2
代入①式, k[y〞
2
+P(x)yˊ
2
+Q(x)y
2
]=f(x)=kf(x),f(x)≠0,故k=1,y
1
=y
2
与已知矛盾,所以y
1
,y
2
是线性无关的. (2)y
1
,y
2
是非齐次方程的解,且y
1
≠y
2
,则y
1
-y
2
是对应齐次方程,即y〞+P(x)yˊ+Q(x)y=0的一个解 y=λy
1
+(1-λ)y
2
=λ(y
1
-y
2
)+y
2
, 由非齐次方程解的结构知y=λy
1
+(1-λ)y
2
是y〞+P(x)+Q(x)y=f(x)的解.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/2VD4777K
0
考研数学三
相关试题推荐
设10件产品中有4件不合格品,从中任取两件,已知所取两件产品中有一件是不合格品,则另一件也是不合格品的概率是()
设f(x)在[a,+∞)上二阶可导,f(a)<0,f’(a)=0,且f"(x)≥k(k>0),则f(x)在(a,+∞)内的零点个数为().
设f(x)有二阶连续导数,且f’(0)=0,=1,则()
设f(x)是不恒为零的奇函数,且f’(0)存在,则g(x)=().
设f(x)连续,则在下列变上限积分中,必为偶函数的是()
设随机变量X的分布函数为F(x),概率密度为f(x)=af1(x)+bf2(x),其中f1(x)是正态分布N(0,σ2)的概率密度,f2(x)是参数为λ的指数分布的概率密度,已知F(0)=,则()
D是顶点分别为(0,0),(1,0),(1,2)和(0,1)的梯形闭区域,则=_____________________。
曲线段(如图所示)的方程为y=f(x),函数f(x)在区间[0,a]上有连续的导数,则定积分等于()
求∫(arccosx)2dx.
随机试题
元朝的最高宗教审判机关称之为
极限等于【】
眼的调节主要包括
上前牙髓腔最宽的地方在
“递延所得税负债”科目贷方登记的内容有()。
某开发商向银行贷款3000万元,期限为3年,年利率为8%,若该笔贷款的还款方式为期间按季度计息、到期后一次偿还本息,则开发商为该笔贷款支付的利息总额是()万元。
黄河上游的著名峡谷有()。
布鲁纳认为,无论我们选择何种学科,都务必使学生理解该学科的基本结构。依此而建立的课程理论为()。
影响客运站到发线通过能力的因素()。
当前,全社会对人口问题(issueofpopulation)的认识不断深化。人们对人口问题已经达成了以下共识:控制人口增长有利于实现人口与经济、社会、资源、环境的协调发展和可持续发展;解决人口问题还应强调提高人口素质和健康水平,提高人类生活质量,实现人
最新回复
(
0
)