首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(95年)设f(χ)、g(χ)在区间[-a,a](a>0)上连续.g(χ)为偶函数,且f(χ)满足条件f(χ)+f(-χ)=A(A为常数) (1)证明∫-aaf(χ)g(χ)dχ=A∫0ag(χ)dχ (2)利用(1)的结论计算定积分|si
(95年)设f(χ)、g(χ)在区间[-a,a](a>0)上连续.g(χ)为偶函数,且f(χ)满足条件f(χ)+f(-χ)=A(A为常数) (1)证明∫-aaf(χ)g(χ)dχ=A∫0ag(χ)dχ (2)利用(1)的结论计算定积分|si
admin
2019-06-25
113
问题
(95年)设f(χ)、g(χ)在区间[-a,a](a>0)上连续.g(χ)为偶函数,且f(χ)满足条件f(χ)+f(-χ)=A(A为常数)
(1)证明∫
-a
a
f(χ)g(χ)dχ=A∫
0
a
g(χ)dχ
(2)利用(1)的结论计算定积分
|sinχ|arctane
χ
dχ.
选项
答案
由于∫
-a
a
f(χ)g(χ)dχ=∫
-a
0
f(χ)g(χ)dχ+∫
0
a
f(χ)g(χ)dχ 又∫(χ)g(χ)dχ[*]∫f(-t)g(-t)dt=∫f(-t)g(t)dt =∫
0
a
f(-χ)g(χ)dχ 所以∫
-a
a
f(χ)g(χ)dχ=∫
0
a
[f(χ)+f(-χ)]g(χ)dχ=A∫
0
a
g(χ)dχ (2)取f(χ)=arctane
χ
,g(χ)=|sinχ|,a=[*] f(χ)+f(-χ)=arctane
χ
+arctane
-χ
由于(arctane
χ
+arctane
-χ
)=[*]≡0 则arctane
χ
+arctane
-χ
=A 令χ=0,得2arctan1=A,A=[*] 即f(χ)+f(-χ)=[*] 于是有[*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/2TJ4777K
0
考研数学三
相关试题推荐
设随机变量X1,X2,X3相互独立,且X1~U[0,6],X2~N(0,22),X3~P(3),记Y=X1一2X2+3X3,则D(Y)=__________.
设B为三阶非零矩阵,且AB=O,则r(A)=____________.
设A是三阶实对称矩阵,r(A)=1,A2一3A=0,设(1,1,一1)T为A的非零特征值对应的特征向量.求矩阵A.
设三阶矩阵A=(α,γ1,γ2),B=(β,γ1,γ2),其中α,β,γ1,γ2是三维列向量,且|A|=3,|B|=4,则|5A一2B|___________.
设某种零件的长度L~N(18,4),从一大批这种零件中随机取出10件,求这10件中长度在16~22之间的零件数X的概率分布、数学期望和方差.
设某元件的使用寿命X的概率密度为其中θ>0为未知参数.又设(x1,x2,…,xn)是样本(X1,X2,…,Xn)的观察值,求参数θ的最大似然估汁值.
设X为总体,(X1,X2,…,Xn)为来自总体X的样本,且总体的方差DX=σ2,令S02=则E(S02)=____________.
设向量α=(a1,a2,…,an)T,其中a1≠0,A=ααT.求A的非零特征值及其对应的线性无关的特征向量.
设n阶实对称矩阵A的秩为r,且满足A2=A(A称为幂等阵).求:二次型XTAX的标准形;
(2013年)设总体X的概率密度为其中θ为未知参数且大于零,X1,X2,…,Xn为来自总体X的简单随机样本。(Ⅰ)求θ的矩估计量;(Ⅱ)求θ的最大似然估计量。
随机试题
采用随机抽样的方法抽取某班10名中学生,调查本班的英语成绩。10名学生的英语成绩分别为85,90,76,94,82,91,88,80,96,89,计算这10名中学生的英语平均成绩是
痛泻要方中防风的作用是
实验研究的原则包括
某市A区法院受理一起盗窃案件,因该案被告人与该法院院长具有亲属关系,市中级人民法院遂指定将该案移交B区法院审判。对于该案的全部案卷材料,A区法院应按下列哪一选项处理?
构筑物水池满水试验程序应为()。
根据《合同法》的规定,合同格式条款的使用必须合法,否则格式条款无效。下列各项中,属于无效的格式条款有()。
一般资料:求助者,男性,26岁,硕士毕业,公务员,未婚。案例介绍:求助者硕士毕业后顺利考入某国家机关。他觉得工作来之不易,应该好好努力,以图将来有好的发展。因工作勤奋,受到领导和同事的好评。但一年多来,总是觉得脖子僵硬,有时颈部肌肉抽搐,伴双上肢
画室:写生
在已实施的应对国际金融危机刺激经济计划中,中国遵守世界贸易组织相关规定,平等对待国内外产品,为外国企业提供大量( )。最恰当的一项是( )。
四大名著
最新回复
(
0
)