首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
η*是非齐次线性方程组Ax=b的一个解,ξ1,…,ξn-r是对应的齐次线性方程组的一个基础解系。证明: η*,η*+ξ1,…,η*+ξn-r线性无关。
η*是非齐次线性方程组Ax=b的一个解,ξ1,…,ξn-r是对应的齐次线性方程组的一个基础解系。证明: η*,η*+ξ1,…,η*+ξn-r线性无关。
admin
2019-07-22
71
问题
η
*
是非齐次线性方程组Ax=b的一个解,ξ
1
,…,ξ
n-r
是对应的齐次线性方程组的一个基础解系。证明:
η
*
,η
*
+ξ
1
,…,η
*
+ξ
n-r
线性无关。
选项
答案
假设η
*
,η
*
+ξ
1
,…,η
*
+ξ
n-r
线性相关,则存在不全为零的数c
0
,c
1
,…,c
n-r
使c
0
η
*
+c
1
(η
*
+ξ
1
)+…+c
n-r
(η
*
+ξ
n-r
)=0,即 (c
0
+c
1
+…+c
n-r
)η
*
+c
1
ξ
1
+…+c
n-r
ξ
n-r
=0。 (2) 用矩阵A左乘上式两边,得 0=A[(c
0
+c
1
+…+c
n-r
)η
*
+c
1
ξ
1
+…+c
n-r
ξ
n-r
] =(c
0
+c
1
…+c
n-r
)Aη
*
+c
1
Aξ
1
+…+c
n-r
Aξ
n-r
=(c
0
+c
1
…+c
n-r
)b, 因为b≠0,故c
0
+c
1
+…+c
n-r
=0,代入(2)式,有 c
1
ξ
1
+…+c
n-r
ξ
n-r
=0,ξ
1
,…,ξ
n[r
是对应的齐次线性方程组的一个基础解系,故ξ
1
,…,ξ
n-r
线性无关,因此c
1
=c
2
=…=c
n-r
=0,则c
0
=0.与假设矛盾。 综上,向量组η
*
,η
*
+ξ
1
,…,η
*
+ξ
n-r
线性无关。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/2QN4777K
0
考研数学二
相关试题推荐
设f(x)是以T为周期的可微函数,则下列函数中以T为周期的函数是()
设f(χ)在[a,b]上连续,且f(χ)>0,证明:存在ξ∈(a,b),使得∫aξf(χ)dχ=∫ξbf(χ)dχ.
设m,n均是正整数,则反常积分的收敛性()
设f(χ)=处处可导,确定常数a,b,并求f′(χ).
设函数y=y(χ)由方程eχ+y+cos(χy)=0确定,则=_______.
设α1,α2,…,αn为n个线性无关的n维向量,且与向量β正交.证明:向量β为零向量.
累计积分dθ∫0cosθf(rcosθ,rsinθ)rdr可以写成()
设齐次线性方程组其中ab≠0,n≥2.讨论a,b取何值时,方程组只有零解、有无穷多个解?在有无穷多个解时求出其通解.
求下列函数的带皮亚诺余项至括号内所示阶数的麦克劳林公式:(Ⅰ)f(x)=excosx(x3);(Ⅱ)f(x)=(x3);(Ⅲ)f(x)=,其中a<0(x2).
求的带皮亚诺余项的三阶麦克劳林公式.
随机试题
货币的投机需求
下列哪种疾病不孕和痛经共存:
HBV现症感染者传染性强的指标是
甲公司获得一项用于自行车雨伞装置的实用新型专利,发现乙公司生产的自行车使用了该技术,遂向法院起诉,要求乙公司停止侵害并赔偿损失10万元。甲公司的下列哪些做法是正确的?(2011年卷三63题)
宋代为了保证土地买卖中,同等条件下亲邻的优先购买权,规定如果没有经过这一程序而进行典卖土地,在()内典卖人有权回赎土地。
如图所示,折射率为n2,厚度为e的透明介质薄膜的上方和下方的介质的折射率为n1和n3,已知:n1<n2>n3。若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜的上、下两表面反射的光束①和②的光程差是()。
禁止期货从业人员挪用客户期货保证金或者其他资产的规定,主要是针对以下哪个机构的期货从业人员提出的?()
属于贝克提出的认知治疗技术的是()。
根据以下资料,回答问题。下列说法正确的是:
Li-Fi,analternativetoWi-Fithattransmitsdatausingthespectrumofvisiblelight,hasachievedanewbreakthrough,withUK
最新回复
(
0
)