首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知非齐次线性方程组A3×4x=6①有通解k1[1,2,0,-2]T+k2[4,-1,-1,-1]T+[1,0,-1,1]T,则满足方程组①且满足条件x1=x2,x3=x4的解是________.
已知非齐次线性方程组A3×4x=6①有通解k1[1,2,0,-2]T+k2[4,-1,-1,-1]T+[1,0,-1,1]T,则满足方程组①且满足条件x1=x2,x3=x4的解是________.
admin
2021-07-27
78
问题
已知非齐次线性方程组A
3×4
x=6①有通解k
1
[1,2,0,-2]
T
+k
2
[4,-1,-1,-1]
T
+[1,0,-1,1]
T
,则满足方程组①且满足条件x
1
=x
2
,x
3
=x
4
的解是________.
选项
答案
[2,2,-1,-1]
T
解析
方程组①的通解为
解得k
1
=1,k
2
=0,代入通解得满足①及x
1
=x
2
,x
3
=x
4
的解为[2,2,-1,-1]
T
.
转载请注明原文地址:https://www.kaotiyun.com/show/2Hy4777K
0
考研数学二
相关试题推荐
(1)证明两个上三角矩阵A和B的乘积AB还是上三角矩阵;并且AB对角线元素就是A和B对应对角线元素的乘积.(2)证明上三角矩阵A的方幂Ak与多项式f(A)也都是上三角矩阵;并且Ak的对角线元素为a11k,a22k,…,a33k;f(A)的对角线元素为f(
已知向量组α1,α2,α3,α4线性无关,则向量组2α1+α3+α4,α2一α4,α3+α4,α2+α3,2α1+α2+α3的秩是()
设A是m×n矩阵,AT是A的转置,若η1,η2,…,ηt为方程组ATx=0的基础解系,则r(A)=()
设a1,a2,…,an是互不相同的实数,且求线性方程组AX=b的解.
设向量组(Ⅰ)α1,α2,α3;(Ⅱ)α1,α2,α3,α4;(Ⅲ)α1,α2,α3,α5,若向量组(Ⅰ)与向量组(Ⅱ)的秩为3,而向量组(Ⅲ)的秩为4.证明:向量组α1,α2,α3,α5-α4的秩为4.
设A是n阶矩阵,对于齐次线性方程组(I)Anx=0和(Ⅱ)An+1x=0,现有命题①(I)的解必是(Ⅱ)的解;②(Ⅱ)的解必是(I)的解;③(I)的解不一定是(Ⅱ)的解;④(Ⅱ)的解不一定是(I)的解.其中
设A是n阶矩阵,下列结论正确的是().
设A是n阶矩阵,α是n维列向量,若,则线性方程组()
将曲线y=1-x2(0≤x≤1)和x轴与y轴所围的区域用曲线y=ax2分为面积相等的两部分,其中a是大于零的常数,求a的值.
随机试题
表演型人格又称寻求注意型人格,是一种以过分情感化和夸张的言行吸引他人注意的人格。具有表演型人格的人易感情用事,自我中心,情绪多变,以致难以与周围人保持正常的社会关系。根据上述定义,下列与表演型人格无关的是:
与企业信息化密切相关的管理基础工作包括
三部脉举之无力,按之空豁,应指松软的脉是( )。
患者女,29岁,长期便秘,排便时肛门撕裂样疼痛,后可逐渐缓解,同时伴有出血,查体可见肛管纵行裂口,肛门括约肌痉挛,应首先考虑
患者,女,68岁,患大叶性肺炎,高热昏迷10天,10天内给予大量抗生素治疗。近日发现其口腔黏膜破溃,创面上附着白色膜状物,拭去附着物可见创面轻微出血。该患者口腔病变原因可能是
施工企业编制投标报价的主要依据是()。
《预算法》的主要内容包括预算管理职权、预算收支范围、预算编制、预算审查和批准、预算执行、预算调整、决算、监督和法律责任等。()
国家赔偿的主要方式是()。
十进制数67转换成二进制数是______。
Theprocessbymeansofwhichhumanbeingscanarbitrarilymakecertainthingsstandforotherthingsmaybecalledthesymbolic
最新回复
(
0
)