首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f"(x)≤0(x≥0),P(x,y)为曲线L:y=f(x)上任一点,过点P的切线交y轴于点Q,且S△OPQ=x3e-x,又曲线过点(1,). (Ⅰ)求f(x); (Ⅱ)求y=f(x)在[0,+∞)上的最小值和最大值,并求曲线y=f(x)在(0,+∞)的
设f"(x)≤0(x≥0),P(x,y)为曲线L:y=f(x)上任一点,过点P的切线交y轴于点Q,且S△OPQ=x3e-x,又曲线过点(1,). (Ⅰ)求f(x); (Ⅱ)求y=f(x)在[0,+∞)上的最小值和最大值,并求曲线y=f(x)在(0,+∞)的
admin
2021-03-18
61
问题
设f"(x)≤0(x≥0),P(x,y)为曲线L:y=f(x)上任一点,过点P的切线交y轴于点Q,且S
△OPQ
=x
3
e
-x
,又曲线过点(1,
).
(Ⅰ)求f(x);
(Ⅱ)求y=f(x)在[0,+∞)上的最小值和最大值,并求曲线y=f(x)在(0,+∞)的凹凸性.
选项
答案
(Ⅰ)过点P(x,y)的切线为Y-y=y’(X-x),令X=0得Y=y-xy’, 由题意得S
△OPQ
=[*]·x·(y-xy’)=x
3
e
-x
, 整理得y’-[*]=-2xe
-x
, 解得y=(∫-2xe
-x
·[*]dx+C)[*]=(2e
-x
+C)x, 因为曲线经过点[*],所以C=0,故f(x)=2xe
-x
. (Ⅱ)令f’(x)=2(1-x)e
-x
=0得x=1, 当0<x<1时,f’(x)>0;当x>1时,f’(x)<0, 则x=1为f(x)在[0,+∞)的最大值点,最大值为M=f(1)=[*] 因为当x>0时,f(x)>0且f(0)=0,所以最小值为m=f(0)=0; 令f"(x)=2(x-2)e
-x
=0得x=2, 当0<x<2时,f"(x)<0;当x>2时,f"(x)>0, 则[0,2]为曲线y=f(x)的凸区间,[2,+∞)为曲线y=f(x)的凹区间.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/1oy4777K
0
考研数学二
相关试题推荐
设A为3阶矩阵,|A|=3,A*为A的伴随矩阵.若交换A的第1行与第2行得矩阵B,则|BA*|=__________.
设A=,则A-1=_______
微分方程y"=的通解为____________.
微分方程y’’+2y’+5y=0的通解为__________。
设A为三阶矩阵,A的第一行元素为1,2,3,|A|的第二行元素的代数余子式分别为a+1,a-2,a-1,则a=_______.
设函数f(u)可微,且f’(2)=2,则z=f(x2+y2)在点(1,1)处的全微分dz|(1,1)=_________.
设f(χ,y)为连续函数,且f(χ,y)=y2+χf(χ,y)dχdy,则f(χ,y)=_______.
设f(x)二阶连续可导,且f(0)=1,f(2)=3,f’(2)=5,则∫01xf"(2x)dx=_______.
设函数f(χ)在[0,π]上连续,且∫0πf(χ)sinχdχ=0∫0πf(χ)cosχdχ,=0.证明:在(0,π)内f(χ)至少有两个零点.
要设计一形状为旋转体的水泥桥墩,桥墩高为h,上底面半径为a,要求桥墩在任一水面上所受上部桥墩的平均压强为一常数P,设水泥比重为ρ,试求桥墩形状.
随机试题
公平正义是法治思维的基本内容之一。公平正义的内容主要包括()
不属于淋巴器官的结构是【】
医师考核不合格者,县级以上人民政府卫生行政部门可以责令其暂停执业活动()
[2011年,第96题]JK触发器及其输入信号波形如图7.6-10所示,那么,在t=t0和t=t1时刻,输出Q分别为()。
套期保值是指生产经营者在现货市场上买进或卖出一定的现货商品的同时,在期货市场上卖出或买进与现货( )的期货商品。Ⅰ.品种相同Ⅱ.数量相当Ⅲ.方向相反Ⅳ.价格相同
征收土地方案具备()条件的,土地行政主管部门方可报人民政府批准。
当前社会,有人害怕说真话,有人害怕听真话,你怎么看?
Withtheusualfloodofimmigrantsfromnon-English-speakingcountries,therecomesamulticulturalworkforce.Alongwiththis
下述命令中的______命令不能关闭表文件。
Today,theTowerofLondonisoneofthemostpopulartourist【C1】______andattractsoverthreemillionvisitorsayear.Itw
最新回复
(
0
)