首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶实对称矩阵A的各行元素之和都为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T都是齐次线性方程组AX=0的解. (1)求A的特征值和特征向量. (2)求作正交矩阵Q和对角矩阵Λ,使得QTAQ=A. (3)求A及[A-(3/2)E]6.
设3阶实对称矩阵A的各行元素之和都为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T都是齐次线性方程组AX=0的解. (1)求A的特征值和特征向量. (2)求作正交矩阵Q和对角矩阵Λ,使得QTAQ=A. (3)求A及[A-(3/2)E]6.
admin
2018-06-27
58
问题
设3阶实对称矩阵A的各行元素之和都为3,向量α
1
=(-1,2,-1)
T
,α
2
=(0,-1,1)
T
都是齐次线性方程组AX=0的解.
(1)求A的特征值和特征向量.
(2)求作正交矩阵Q和对角矩阵Λ,使得Q
T
AQ=A.
(3)求A及[A-(3/2)E]
6
.
选项
答案
(1)条件说明A(1,1,1)
T
=(3,3,3)
T
,即α
0
=(1,1,1)
T
是A的特征向量,特征值为3.又α
1
,α
2
都是AX=0的解说明它们也都是A的特征向量,特征值为0.由于α
1
,α
2
线性无关,特征值0的重数大于1.于是A的特征值为3,0,0. 属于3的特征向量:cα
0
,c≠0. 属于0的特征向量:c
1
α
1
+c
2
α
2
,c
1
,c
2
不都为0. (2)将α
0
单位化,得η
0
=[*] 对α
1
,α
2
作施密特正交化,得 [*] 作Q=(η
0
,η
1
,η
2
),则Q是正交矩阵,并且 Q
T
AQ=Q
-1
AQ=[*] (3)建立矩阵方程A(α
0
,α
1
,α
2
)=(3α
0
,0,0),用初等变换法求解:得 [*] 由Q
-1
AQ=[*] 得 A=Q[*]Q
-1
. 于是 A-(3/2)E=[*]Q
-1
. [A-(3/2)E]
6
=(3/2)
6
E.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/1Zk4777K
0
考研数学二
相关试题推荐
已知A是3阶矩阵,α1,α2,α3是3维线性无关列向量,且Aα1=3α1+3α2—2α3,Aα2=一α2,Aα3=8α1+6α2—5α2.求A的特征值和特征向量;
(I)设f(x),g(x)在(a,b)可微,g(x)≠0,存在常数C,使得f(x)=Cg(x)(x∈(a,b));
设函数F(u,v)具有二阶连续偏导数,且z=F(x+y,x+y+z)确定隐函数z=z(x,y),求
设f(u)具有连续的一阶导数,且当x>0,y>0时,满足求z的表达式.
设则f(x,y)在点O(0,0)处()
微分方程xy’’一y’=x的通解是_______.
设半径为1的球正好有一半沉入水中,球的比重为1,现将球从水中取出,问要作多少功?(假设在球从水中取出的过程中水面的高度不变.)
已知对于n阶方阵A,存在自然数k,使得Ak=0,试证明矩阵E-A可逆,并求出逆矩阵的表达式(E为n阶单位矩阵).
求内接于椭球面的长方体的最大体积.
若xf"(x)+3x[f’(x)]2=1-ex且f’(0)=0,f"(x)在x=0连续,则下列正确的是
随机试题
一般物品或劳务等的采购可以采用的方式有_____、______。
装箱单的第二联,又称()。
如题图所示的简支梁,其截面为不对称工字形,材料为Q235一A.F,钢梁的中点和两端均有侧向支承,上面承受有集中荷载(未包括梁自重)F=160kN(设计值)的作用,中和轴位置如图。截面对y轴的惯性矩为2330cm4时,截面对y轴的长细比为()。
持有《保险公估从业人员资格证书》的保险公估从业人员不得低于员工人数的()
下列各项中,属于会计信息质量要求的有()。
组织环境主要包括()。
2015年度,某公司计提坏账准备300万元,计提无形资产减值准备800万元,计提可供出售债券投资减值准备400万元;交易性金融资产公允价值上升了50万元。假定不考虑其他因素。在2015年度利润表中,对上述资产价值变动列示方法正确的是()。
铁路集装箱货物运送程序为:①空箱发放;②货物接受;③集装箱承运日期表的确定;④货运单的审核;⑤运单审批;⑥装车。其顺序为()。
临渴掘井:临阵磨枪
总需求向下倾斜的机制是什么?其斜率受哪些因素影响?
最新回复
(
0
)