首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,α1,α2,…,αn是n维列向量,其中αn≠0,若Aα1=α2,Aα2=α3,…,Aαn-1=αn,Aαn=0. 证明:α1,α2,…,αn线性无关.
设A是n阶矩阵,α1,α2,…,αn是n维列向量,其中αn≠0,若Aα1=α2,Aα2=α3,…,Aαn-1=αn,Aαn=0. 证明:α1,α2,…,αn线性无关.
admin
2017-06-14
85
问题
设A是n阶矩阵,α
1
,α
2
,…,α
n
是n维列向量,其中α
n
≠0,若Aα
1
=α
2
,Aα
2
=α
3
,…,Aα
n-1
=α
n
,Aα
n
=0.
证明:α
1
,α
2
,…,α
n
线性无关.
选项
答案
设k
1
α
1
+k
2
α
2
+…+k
n
α
n
=0, ① 据已知条件,有 Aα
1
=α
2
, A
2
α
1
=Aα
2
=α
3
,…, A
n-1
α
1
=A
n-2
α
2
=…=Aα
n-1
=α
n
, A
n
α
1
=A
n-1
α
2
=…=Aα
n
=0, 于是,用A
n-1
左乘①式,得 k
1
α
n
=0. 由于α
n
≠0,得k
1
=0. 再依次用A
n-2
,A
n-3
,…,左乘①式,可得到k
2
=k
3
=…=k
n
=0,所以α
1
,α
2
,…,α
n
线性无关.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/0pu4777K
0
考研数学一
相关试题推荐
设求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3;
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-2,α1=(1,-1,1)T是A的属于λ1的一个特征向量.记B=A5-4A3+E,其中E为3阶单位矩阵.求矩阵B.
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-2,α1=(1,-1,1)T是A的属于λ1的一个特征向量.记B=A5-4A3+E,其中E为3阶单位矩阵.验证α1是矩阵曰的特征向量,并求B的全部特征值的特征向量;
设A为m阶实对称矩阵,B为m×n实矩阵,BT为B的转置矩阵,试证:BTAB为正定矩阵的充分必要条件是B的秩r(B)=n.
若3维列向量α,β满足αTβ=2,其中αT为α为转置,则矩阵βαT的非零特征值为
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2则α1,A(α1+α2)线性无关的充分必要条件是
已知向量组(I):α1,α2,α3;(II):α1,α2,α3,α4;(Ⅲ):α1,α2,α3,α5.如果各向量组的秩分别为r(I)=r(Ⅱ)=3,r(Ⅲ)=4.证明向量组α1,α2,α3,α5-α4的秩为4.
一电子仪器由两个部件构成,以X和Y分别表示两个部件的寿命(单位:千小时),已知X和Y的联合分布函数为F(x,y)=(Ⅰ)X和Y是否独立?(Ⅱ)求两个部件的寿命都超过100小时的概率a.
(2012年试题,二)设X为三维单位列向量,E为三阶单位矩阵,则矩阵E—XXT的秩为_________________.
随机试题
驾驶机动车在下坡路段停车怎样使用行车制动?
患者,男,25岁,上前牙区反复出现脓包就诊,查体牙体变色,颊侧见一小脓点,按压少量脓液流出,舌面见充填物,X线片见根尖区阴影,根中1/3高密度不透光物,诊断为慢性根尖周炎,器械分离。如上诉处理方法不成功,考虑采用何种治疗手段
关于早期绒毛活检,下列哪项不恰当
糖尿病最基本的治疗措施是
下颌骨骨折的好发部位中不包括
患者,女,28岁。患急性乳腺炎10天,脓肿溃破,引流不畅,发热,纳差,舌苔薄黄,脉弦。治疗应首选
A.沉香B.滑石C.芒硝D.没药E.鲜生姜易粘连的饮片是
从混有5个次品的20个零件中任意抽取两个,已经发现其中一个是次品,那么两个都是次品的概率是多少?
陈先生:昨天我驾车时被警察出具罚单,理由是我超速。警察这样做是不公正的。我敢肯定,当时我看到很多车都超速,为什么受罚的只有我?贾女士:你并没有受到不公正的对待,因为警察当时不可能制止所有的超速汽车。事实上,当时每个超速驾驶的人都同样可能被出具罚单。确定
Ibecameinterestedinwritingatanearlyage.Sowhenmyfourth-gradeteachertoldmeabouta【C1】______writer’sconferencew
最新回复
(
0
)