首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求(x,y,z)=2x+2v—z2+5在区域Ω:x2+y2+z2≤2上的最大值与最小值.
求(x,y,z)=2x+2v—z2+5在区域Ω:x2+y2+z2≤2上的最大值与最小值.
admin
2017-11-22
109
问题
求(x,y,z)=2x+2v—z
2
+5在区域Ω:x
2
+y
2
+z
2
≤2上的最大值与最小值.
选项
答案
f(x,y,z)在有界闭区域Ω上连续,一定存在最大、最小值. 第一步,先求f(x,y,z)在Ω内的驻点. 由[*]=2知f(x,y,z)在Ω内无驻点,因此f(x,y,z)在Ω的最大、最小值都只能在Ω的边界上达到. 第二步,求f(x,y,z)在Ω的边界x
2
+y
2
+z
2
=2上的最大、最小值,即求f(x,y,z)在条件x
2
+y
2
+z
2
—2=0下的最大、最小值. 令F(x,y,z,λ)=2x+2y— z
2
+5+λ(x
2
+y
2
+z
2
—2),解方程组 [*] 由①,②知x=y,由③知z=0或λ=1.由x=y,z=0 代入④知x=y=±1,z=0.当λ=1时由①,②,④也得x=y=—1,z=0.因此得驻点P
1
(—1,—1,0)与P
2
(1,1,0). 计算得知f(P
1
)=1,f(P
2
)=9. 因此,f(x,y,z)在Ω的最大值为9,最小值为1.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/0nX4777K
0
考研数学三
相关试题推荐
设f(x)在区间[a,b]上满足a≤f(x)≤b,且有|f’(x)|≤q<1,令un=f(un-1)(n=1,2,…),u0∈[a,b],证明:级数(un+1一un)绝对收敛.
设f(x)是连续函数.(1)求初值问题的解,其中a>0;(2)若|f(x)|≤k,证明:当x≥0时,有|y(x)|≤(eax一1).
设总体X的密度函数为f(x)=,θ>0为未知参数,a>0为已知参数,求θ的极大似然估计量.
设X1,…,X9为来自正态总体X~N(μ,σ2)的简单随机样本,令证明:Z~t(2).
一电路使用某种电阻一只,另外35只备用,若一只损坏,立即使用另一只更换,直到用完所有备用电阻为止.设电阻使用寿命服从参数为λ=0.01的指数分布,用X表示36只电阻的使用总寿命,用中心极限定理估计P(X>4200)(=0.9772).
f(x)在[-1,1]上三阶连续可导,且f(-1)=0,f(1)=1,f’(0)=0.证明:存在ξ∈(一1,1),使得f"(ξ)=3.
设f(x)为[a,b]上的函数且满足,x1,x2∈[a,b],则称f(x)为[a,b]上的凹函数,证明:若f(x)为[a,b]上的有界凹函数,则下列结论成立:①∈[0,1],f(λx1+(1-λ)x2)≤λf(x1)+(1-λ)f(x2),x1,x2
设f(x)在x=0处二阶导数连续,且试求f(0),f’(0),f"(0)以及极限
设A是n阶实矩阵,证明:tr(AAT)=0的充分必要条件是A=O.
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内大于零,并且满足xf’(x)=f(x)+(a为常数),又曲线y=f(x)与x=1,y=0所围的图形S的面积为2.求函数y=f(x),并问a为何值时,图形S绕x轴旋转一周所得的旋转体的体积最小.
随机试题
下列权利中,属于对世权的是()
A.医师不仅要关心病人的躯体,而且要关心病人的心理;不仅要关心病人个体,而且要关心病人家属、病人后代以至关心社会B.按经济条件、身份、地位把病人分成不同等级C.内心深处的自我评价能力D.为病人、病人家属、社会减少治疗费用,减轻大病造成的经济负担E.
农民集体土地使用权根据使用类型可划分为()。
A企业投资10万元购入一台设备,无其他投资,初始期为0,预计使用年限为10年,无残值。设备投产后预计每年可获得税后经营净利润4万元,则该投资的静态投资回收期为()年。
想知道人如何感受、思考、判断,但又无法看到大脑怎样作业,大脑就成了一个无法打开的黑箱。给这个黑箱输入一个刺激,通过分析输出的变化来推测其内部工作的过程,这便是利用黑箱方法从事研究的基本逻辑。它至今在心理和行为研究中占统治性地位。其应用的极端形式是把人脑和计
假设系统中有运行的事务,若要转储全部数据库应采用(32)方式。
参数的传递可以按值传递或引用传递,也可以使用( )的将地址传递给过程或函数。
Access的“切换面板”归属的对象是()。
Somepeoplethinkthathumanneedsforfarmland,housing,andindustryaremoreimportantthansavinglandforendangeredanimal
Thedreamofpersonalisedflightisstillvividinthemindsofmanyinventors,somedevelopingcycle-poweredcraft,others【C1】_
最新回复
(
0
)