首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n维向量α1,α2,…,αs线性无关,而α1,α2,…,αs,β线性相关,证明β可以由α1,α2,…,αs线性表出.且表示方法唯一.
设n维向量α1,α2,…,αs线性无关,而α1,α2,…,αs,β线性相关,证明β可以由α1,α2,…,αs线性表出.且表示方法唯一.
admin
2018-06-12
65
问题
设n维向量α
1
,α
2
,…,α
s
线性无关,而α
1
,α
2
,…,α
s
,β线性相关,证明β可以由α
1
,α
2
,…,α
s
线性表出.且表示方法唯一.
选项
答案
因为α
1
,α
2
,…,α
s
,β线性相关,故存在不全为0的k
1
,k
2
,…,k
s
,k使得 k
1
α
1
+k
2
α
2
+…+k
s
α
s
+kβ=0, 那么必有k≠0(否则k
1
,k
2
,…,k
s
不全为0,而k
1
α
1
+k
2
α
2
+…+k
s
α
s
=0,这与α
1
,α
2
,…,α
s
线性无关相矛盾).从而β=-[*](k
1
α
1
+k
2
α
2
+…+k
s
α
s
),即β可以由α
1
,α
2
,…,α
s
线性表出. 如果β有两种表示方法,设为 β=χ
1
α
1
+χ
2
α
2
+…+χ
s
α
s
及β=y
1
α
1
+y
2
α
2
+…+y
s
α
s
, 那么(χ
1
-y
1
)α
1
+(χ
2
-y
2
)α
2
+…+(χ
s
-y
s
)α
s
=0. 因为χ
1
-y
1
,χ
2
-y
2
,…,χ
s
-y
s
不全为0,从而α
1
,α
2
,…,α
s
线性相关,与已知矛盾.故β的表示法唯一.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/0Ug4777K
0
考研数学一
相关试题推荐
由a1=(1,1,0,0)T,a2=(1,0,1,1)T所生成的向量空间记作L1,由b1=(2,-1,3,3)T,b2=(0,1,-1,-1)T所生成的向量空间记作L2,试证L1=L2.
若f(-1,0)为函数f(χ,y)=e-χ(aχ+b-y2)的极大值,则常数a,b应满足的条件是
设F(χ,y)在点(χ0,y0)某邻域有连续的偏导数,F(χ0,y0)=0,则F′y(χ0,y0)≠0是F(χ,y)=0在点(χ0,y0)某邻域能确定一个连续函数y=y(χ),它满足y0=y(χ0),并有连续的导数的_______条件.
设平面上连续曲线y=f(χ)(a≤χ≤b,f(χ)>0)和直线χ=a,χ=b及χ轴所围成的图形绕χ轴旋转一周所得旋转体的质心是(,0,0),则的定积分表达式是_______.
设x∈(0,1),证明下面不等式:
求定积分的值
积分=__________
设y(x)是方程y(4)-y’’=0的解,且当x→0时,y(x)是x的3阶无穷小,求y(x).
微分方程的特解是________
随机试题
A、Theywereengagedinmakingaliving.B、Theywerenotinterestedindevelopingahobby.C、Theysufferedfromvariousillnesses
A.角色扮演B.小组讨论C.案例分析D.头脑风暴E.深入访谈主要用于改变培训者态度和技能的方法是
当任何工作已准备就绪,在将其包装、覆盖或隐蔽之前,承包商应及时通知()。
关于沥青路面试验检测的说法错误的是()。
在固定总价合同形式下,承包人承担的风险是()。【2010年考试真题】
债项评级是对客户偿债能力和偿债意愿的计量和评价,反映违约风险大小。()
(2014年)下列影响因素中,属于抽样误差来源的有()。
为了加强旅游安全管理工作,保护旅游者人身、财产安全,旅游安全管理应当贯彻()的方针。
论述完善社会主义市场经济体制需要深化的重点问题。
Toparaphrase18th-centurystatesmanEdmundBurke,"allthatisneededforthetriumphofamisguidedcauseisthatgoodpeople
最新回复
(
0
)