首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y(x)是区间(0,3/2)内的可导函数,且y(1)=0,点P是曲线l:y(x)上的任意一点。l在P处的切线与y轴相交于点(0,Yp),法线与x轴相交于点(Xp,0),若Xp=Yp,求l上点的坐标(x,y)满足的方程。
设y(x)是区间(0,3/2)内的可导函数,且y(1)=0,点P是曲线l:y(x)上的任意一点。l在P处的切线与y轴相交于点(0,Yp),法线与x轴相交于点(Xp,0),若Xp=Yp,求l上点的坐标(x,y)满足的方程。
admin
2018-04-14
194
问题
设y(x)是区间(0,3/2)内的可导函数,且y(1)=0,点P是曲线l:y(x)上的任意一点。l在P处的切线与y轴相交于点(0,Y
p
),法线与x轴相交于点(X
p
,0),若X
p
=Y
p
,求l上点的坐标(x,y)满足的方程。
选项
答案
设点P处的切线为Y-y=y’(X-x),则法线为Y-y=-1/y’(X-x)。 令X=0得Y
p
=y-y’x,令Y=0得X
p
=x+yy’。 由Y
p
=X
p
得,y-xy’=x+yy’,即([*]-1。令y/x=u,则 [*] 那么 (u+1)(x[*]+u)=u-1, 即∫[*]du=-∫dx/x,解得1/2ln(u
2
+1)+arctanu=-lnx+C,即 [*] 已知y(1)=0,所以C=0。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/0Rk4777K
0
考研数学二
相关试题推荐
已知f(x)是周期为5的连续函数,它在x=0的某个邻域内满足关系式f(1+sinx)-3f(1-sinx)=8x+a(x),其中a(x)是当x→0时比x高阶的无穷小,且f(x)在x=1处可导,求曲线y=(x)在点(6,f(6))处的切线方程.
f(x)连续,且f(0)≠0,求极限
设函数f(x),g(x)在上连续,且g(x)>0,利用闭区间上连续函数性质,证明存在一点ξ∈(a,b),使
设函数y=y(x)由参数方程确定。其中x(t)是初值问题
已知y=x/lnx是微分方程y’=y/x+φ(x/y)的解,则φ(x/y)的表达式为
设函数f(u)具有二阶连续导数,而z=f(exsiny)满足方程求f(u).
微分方程y"+y=x2+1+sinx的特解形式可设为
设A为n阶非奇异矩阵,a为n维列向量,b为常数,记分块矩阵其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.计算并化简PQ;
因为x→0+时,[*]所以[*]注解该题考查等价无穷小求极限的方法,当x→0常用的等价无穷小有:(1)x~sinx~tanx~arcsinx~arctanx~ex-1~ln(1+x);(2)1-cosx~,1-cosax~(3)(1+x)a-1~a
(2003年)y=2χ的麦克劳林公式中χn项的系数是_______.
随机试题
商标评审委员会
下列药物中,主治风热表证的是
女孩,会用勺子吃饭,能双脚跳,会翻书,会说2~3个字的短句,最可能的年龄是
下列情形中,属于合理使用肖像权的是:()
环境价值评估有多种方法,其中可用于评估几乎所有环境对象的方法是______。
根据《消防法》的规定,需要进行消防设计的建筑工程,()应当将建筑工程的消防设计图纸及有关资料报送公安消防机构审核。
《宗教事务条例》规定,各宗教坚持()的原则,宗教团体、宗教院校、宗教活动场所和宗教事务不受外国势力的支配。
简述劳动争议仲裁申请的审查内容。
德育目标是学校德育工作的出发点,它不仅决定了德育的内容、形式和方法,而且制约着德育工作的基本过程。()
设f(x)=x2,h(x)=f[1+g(x)],其中g(x)可导,且g'(1)=h'(1)=2,则g(1)=
最新回复
(
0
)