首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记 若α,β正交且均为单位向量,证明f在正交变化下的标准形为2y12+y22。
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记 若α,β正交且均为单位向量,证明f在正交变化下的标准形为2y12+y22。
admin
2018-04-12
92
问题
设二次型f(x
1
,x
2
,x
3
)=2(a
1
x
1
+a
2
x
2
+a
3
x
3
)
2
+(b
1
x
1
+b
2
x
2
+b
3
x
3
)
2
,记
若α,β正交且均为单位向量,证明f在正交变化下的标准形为2y
1
2
+y
2
2
。
选项
答案
设A=2αα
T
+ββ
T
,由于α,β正交,所以α
T
β=β
T
α=0,则 Aα=(2αα
T
+ββ
T
)α=2α|α|
2
+ββ
T
α=2α, 所以α为矩阵对应特征值λ
1
=2的特征向量; Aβ=(2αα
T
+ββ
T
)β=2αα
T
β+β|β|
2
=β, 所以β为矩阵对应特征值λ
2
=1的特征向量。 而矩阵A的秩 r(A)=r(2αα
T
+ββ
T
)≤r(2αα
T
)+r(ββ
T
)=2, 所以λ
3
=0也是矩阵的一个特征值。 故f在正交变换下的标准形为2y
1
2
+y
2
2
。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/0Dk4777K
0
考研数学二
相关试题推荐
微生物培养的增殖速率和它们现有的量及现有的营养物质的乘积成正比(比例系数为k),营养物质减少的速率和微生物的现有量成正比(比例系数为k1),实验开始时,容器内有x。g微生物和y。g营养物质,试求微生物的量及营养物质的量随时间的变化规律,并问何时微生物停止增
一容器的内侧是由图中曲线绕y轴旋转一周而成的曲面,该曲线由x2+y2=2y(y≥1/2)与x2+y2=1(y≤1/2)连接而成。将容器内盛满的水从容器顶部全部抽出,至少需要做多少功?(长度单位:m,重力加速度为gm/s2,水的密度为103g/m3)
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:A2=A的充要条件是ξTξ=1;
设A为n阶非零矩阵,E为n阶单位矩阵.若A3=0,则
设n阶矩阵A非奇异(n≥2),A*是A的伴随矩阵,则
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解.求正交矩阵Q和对角矩阵A,使得QTAQ=A.
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2-α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
f(x1,x2,x3)=ax12+ax22+(a-1)x32+2x1x3—2x2x3.若二次型f的规范形为y12+y22,求a的值.
设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示.求α的值;
(I)利用行列式性质,有[*]
随机试题
急性心肌梗死最早出现的症状是
与成瘾性有关的阿片受体亚型是:
软骨肉瘤的特殊类型不包括
监理大纲的主要内容是( )。
法律规定合同中同时定有违约金与定金条款的,当事人既约定违约金,又约定定金的,一方违约时,对方()。
已知销售量的敏感系数为2,为了确保下年度企业不亏损,销售量下降的最大幅度为()。
下列各项中,事业单位应当确认为单位管理费用的有()。
李工程师:一项权威性的调查数据显示,在医疗技术和设施最先进的美国,婴儿最低死亡率在世界上只占第17位,这使我得出结论,先进的医疗技术和设施,对于人类生命和健康所起的保护作用,对成人要比对婴儿显著得多。张研究员:我不能同意您的论证。事实上,一个国家所具有的先
下列“盛世”出现于唐代的是:
简述伪证罪与诬告陷害罪的区别。
最新回复
(
0
)