首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设当x∈[一1,1]时f(x)连续,F(x)=∫-11|x一t|f(t)dt,x∈[-1,1]. (Ⅰ)若f(x)为偶函数,证明:F(x)也是偶函数; (Ⅱ)若f(x)>0(当-1≤x≤1),证明:曲线y=F(x)在区间[-1,1]上是凹的.
设当x∈[一1,1]时f(x)连续,F(x)=∫-11|x一t|f(t)dt,x∈[-1,1]. (Ⅰ)若f(x)为偶函数,证明:F(x)也是偶函数; (Ⅱ)若f(x)>0(当-1≤x≤1),证明:曲线y=F(x)在区间[-1,1]上是凹的.
admin
2020-03-08
35
问题
设当x∈[一1,1]时f(x)连续,F(x)=∫
-1
1
|x一t|f(t)dt,x∈[-1,1].
(Ⅰ)若f(x)为偶函数,证明:F(x)也是偶函数;
(Ⅱ)若f(x)>0(当-1≤x≤1),证明:曲线y=F(x)在区间[-1,1]上是凹的.
选项
答案
(Ⅰ)设f(x)为连续的偶函数,则 F(一x)=∫
-1
1
|一x一t|f(t)dt=∫
-1
1
|x+t|f(t)dt =∫
-1
1
|x一u{f(一du)(-du)一∫
-1
1
|x一u|f(u)du=F(x)? 所以F(x)也是偶函数. (Ⅱ)F(x)=∫
-1
x
(x—t)f(t)dt+∫
x
1
(t—x)f(t)dt =x∫
-1
x
f(t)dt一∫
-1
x
tf(t)dt+∫
x
1
tf(t)dt一x∫
x
1
f(t)dt, F’(x)=∫
-1
x
f(t)dt+xf(x)一xf(x)一xf(x)+xf(x)一∫
x
1
f(t)dt =∫
-1
x
f(t)dt—∫
x
1
f(t)dt, F"(x)=f(x)+f(x)=2f(x)>0. 所以曲线y=F(x)在区间[一1,1]上是凹的.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/zlS4777K
0
考研数学一
相关试题推荐
设由方程F(x,y,z)=0所确定的函数关系中,已知=()
下列函数中在[-1,2]上定积分不存在的是
已知二次型f(x1,x2,x3)=3x12+cx22+x32-2x1x2+2x1x3-2x2x3的秩为2,则c的值为().
求,其中D是由y=x3,y=1,x=一1所围成的区域,f(u)是连续函数.
产品寿命X是一个随机变量,其分布函数与概率密度分别为F(x),f(x).产品已工作到时刻x,在时刻x后的单位时间△x内发生失效的概率称为产品在时刻z的瞬时失效率,记为λ(x).证明
设矩阵A=,B=P-1A*P,求P+2E的特征值与特征向量,其中A*为A的伴随矩阵,E为三阶单位矩阵。
设函数f(x)在[0,1]上二阶可导,且f(0)=f’(0)=f’(1)=0,f(1)=1.求证:存在ξ∈(0,1),使|f’’(ξ)|≥4.
设在上半平面D={(x,y)丨y>0}内,函数f(x,y)具有连续偏导数,且对任意的t>0都有f(tx,ty)=t-2f(x.y).证明:对D内的任意分段光滑的有向简单闭曲线L,都有
讨论函数f(x)=(x>0)的连续性.
求下列函数的导数
随机试题
四边孔
1950年6月,中国共产党为争取国家财政经济状况的基本好转而召开的重要会议是()
下列属于输出设备的是_______。
在夏季施用有机磷农药,出现中毒症状,在急诊室进行处理时,首选措施是
下列属于单位工程投入使用验收工作内容的是()。
银行存款余额调节表中,银行对账单余额应减去企业已收银行未收。()
值班备勤是要求各级公安机关在任何时候、任何情况下,始终处于常备不懈的戒备状态,坚守岗位,履行职责,按时交接班,保持公安工作的连续性、有序性,维护良好的社会秩序。()
结合材料回答问题:材料1习见平强调,“一带一路”建设是我国在新的历史条件下实行全方位对外开放的重大举措、推行互利互赢的重要平台。我们必须以更高的站位、更广的视野,在吸取和借鉴历史经验的基础上,以创新的理念和创新的思维,扎扎实实做好各项工作使沿线各国人民
设D:χ2+y2≤R2,则=_______.
将数据库的结构划分成多个层次,是为了提高数据库的逻辑独立性和
最新回复
(
0
)