首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2012年)(Ⅰ)证明方程χn+χn-1…+χ=1(n为大于1的整数)在区间(,1)内有且仅有一个实根; (Ⅱ)记(Ⅰ)中的实根为χn,证明χn存在,并求此极限.
(2012年)(Ⅰ)证明方程χn+χn-1…+χ=1(n为大于1的整数)在区间(,1)内有且仅有一个实根; (Ⅱ)记(Ⅰ)中的实根为χn,证明χn存在,并求此极限.
admin
2021-01-19
135
问题
(2012年)(Ⅰ)证明方程χ
n
+χ
n-1
…+χ=1(n为大于1的整数)在区间(
,1)内有且仅有一个实根;
(Ⅱ)记(Ⅰ)中的实根为χ
n
,证明
χ
n
存在,并求此极限.
选项
答案
(Ⅰ)令f(χ)=χ
n
+χ
n-1
+…+χ-1(n>1),则f(χ)在[[*],1]上连续,且 [*],f(1)=n-1>0, 由闭区间上连续函数的介值定理知,方程f(χ)=0在([*],1)内至少有一个实根. 当χ∈([*],1)时, f′(χ)=nχ
n-1
+(n-1)χ
n-2
+…+2χ+1>1>0, 故f(χ)在([*],1)内单调增加. 综上所述,方程f(χ)=0在([*],1)内有且仅有一个实根. (Ⅱ)由χ
n
∈([*],1)知数列{χ
n
}有界,又 χ
n
n
+χ
n
n-1
+…+χ
n
=1 χ
n
n
+χ
n
n-1
+χ
n+1
n-1
+…+χ
n+1
=1 因为χ>0,所以 χ
n
n
+χ
n
n-1
+…+χ
n
>χ
n+1
n
+χ
n+1
n-1
+…+χ
n+1
于是有 χ
n
>χ
n+1
,n=1,2…, 即{χ
n
}单调减少. 综上所述,数列{χ
n
}单调有界,故{χ
n
}收敛. 记a=[*]χ
n
.由于 [*] 令χ→∞并注意到[*]<χ
n
<χ
1
<1,则有 [*] 解得a=[*],即[*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/zk84777K
0
考研数学二
相关试题推荐
设向量组a1,a2,…,am线性相关,且α1≠0,证明存在某个向量ak(2≤k≤m),使ak能由a1,a2,…,ak—1线性表示。
设f(χ)二阶连续可导,f〞(0)=4,=0,求.
设齐次线性方程组,其中ab≠0,n≥2.讨论a,b取何值时,方程组只有零解、有无穷多个解?在有无穷多个解时求出其通解.
已知α1,α2,…,αs线性无关,β可由α1,α2,…,αs线性表出,且表出式的系数全不为零,证明:α1,α2,…,αs,β中任意s个向量线性无关.
设为A*的特征向量,求A*的特征值λ及a,b,c和A对应的特征值μ.
设区域其中常数a>b>0.D1是D在第一象限的部分,f(z,y)在D上连续,等式成立的个充分条件是()
求微分方程(1+x)y"=(x≥0)满足初始条件y(0)=y’(0)=0的特解,其中常数k>0。
设函数f(χ)(χ≥0)可微,且f(χ)>0.将曲线y=f(χ),χ=1,χ=a(a>1)及χ轴所围成平面图形绕χ轴旋转一周得旋转体体积为[a2f(a)-f(1)].若f(1)=,求:(1)f(χ);(2)f(χ)的极值.
(1993年)设平面图形A由χ2+y2≤2χ与y≥χ所确定,求图形A绕直线χ=2旋转一周所得旋转体的体积。
随机试题
看到天上的白云,根据它的变化,人们不由自主地把它想象为一群羊、一堆棉花等各种形象。这种想象属于()
某企业拟筹资2500万元,其中发行债券1000万元,筹资费用率2%,债券年利率为10%,所得税税率为33%;优先股500万元,年股利率7%,筹资费用率为3%;普通股1000万元,筹资费用率为4%,第一年预期股利率为10%,以后各年增长4%。试计算该筹
当今时代的主题是()
在乙型肝炎患者血清中,常规方法不能检测到的乙肝病毒标记物是
关于边沟施工的说法,正确的有()。
某省纺织品集团公司从A国进口粗梳羊毛(税则号列51051000,适用非优惠原产地规则)一批,该批粗梳羊毛系以B国原产的未梳含脂剪羊毛(税则号列51011100,适用优惠原产地规则)加工而成,发票列明货物价值、包装费、至境内指运地的运费及相关费用、保险费,货
2014年11月9日,习近平主席在亚太经合组织工商领导人峰会上表示,新常态将给中国带来新的发展机遇。下列关于我国经济发展“新常态”的主要特点描述正确的一项是()。
代理权产生的依据包括()。
(2000年)设有一半径为R的球体,P0是此球的表面上的一个定点,球体上任一点的密度与该点到P0距离的平方成正比(比例常数k>0),求球体的重心位置。
与十进制数245等值的二进制数是()。
最新回复
(
0
)