首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(88年)设函数f(x)在区间[a,b]上连续,且在(a,b)内有f’(x)>0.证明:在(a,b)内存在唯一的ξ,使曲线y=f(x)与两直线y=f(ξ),x=a所围平面图形面积S1是曲线y=f(x)与两直线y=f(ξ),x=b所围平面图形面积S2的3倍.
(88年)设函数f(x)在区间[a,b]上连续,且在(a,b)内有f’(x)>0.证明:在(a,b)内存在唯一的ξ,使曲线y=f(x)与两直线y=f(ξ),x=a所围平面图形面积S1是曲线y=f(x)与两直线y=f(ξ),x=b所围平面图形面积S2的3倍.
admin
2017-04-20
79
问题
(88年)设函数f(x)在区间[a,b]上连续,且在(a,b)内有f’(x)>0.证明:在(a,b)内存在唯一的ξ,使曲线y=f(x)与两直线y=f(ξ),x=a所围平面图形面积S
1
是曲线y=f(x)与两直线y=f(ξ),x=b所围平面图形面积S
2
的3倍.
选项
答案
令F(x)=∫
a
x
[f(x)一f(t)]dt-3∫
x
b
[f(t)一f(x)]dt. 其中x∈[a,b],显然F(x)在[a,b]上连续.又由f’(x)>0知 f(a)<f(x)<f(b) x∈(a,b) 于是 F(a)=一3∫
a
b
[f(t)一f(a)]dt<0 F(b)=∫
a
b
[f(b)一f(t)]dt>0 由连续函数的介值
解析
转载请注明原文地址:https://www.kaotiyun.com/show/ygu4777K
0
考研数学一
相关试题推荐
设f(x)在(a,b)内是严格下凸函数,证明对任何x1,x2∈(a,b),x1<x<x2,有不等式成立.
互不相容事件与对立事件的区别何在?说出下列各对事件之间的关系:x>20与x≤22;
设α,β为3维列向量,矩阵A=ααT+ββT,其中αT,βT分别是α,β的转置.证明:若α,β线性相关,则秩r(A)
设有一半径为R的球体,P0是球面一定点,球体上任意一点的密度与该点到P0的距离平方成正比(比例常数k>0),求球体的重心的位置.
设Г:x=x(t),y=y(t)(α<t<β)是区域D内的光滑曲线,即x(t),y(t),(α,β)有连续的导数且xˊ2(t)+yˊ2(t)≠0,f(x,y)在D内有连续的偏导数,若Po∈Γ是f(x,y)在Γ上的极值点,求证:f(x,y)在点Po沿Γ的切线
微分方程xyˊ+y=0满足初始条件y(1)=2的特解为________.
曲面(z-a)ψ(x)+(z-b)φ(y)=0与x2+y2=1,z=0所围立体的体积V=________(其中φ为连续正值函数,a>0,b>0).
设线性无关的函数y1,y2,y3都是二阶非齐次线性方程y"+P(x)y’+q(x)y=f(x)的解,C1,C2是任意常数,则该非齐次方程的通解是
设向量α1,α2,...,αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
设f(t)在[0,π]上连续,在(0,π)内可导,且∫0πf(x)cosxdx=∫0πf(x)sinxdx=0,证明:存在ξ∈(0,π),使得f’(ξ)=0.
随机试题
关于证券业财务与会计人员,以下说法错误的是()。
焊接变形主要有()变形。
槟榔杀绦虫时,其用量为
中医药信息特点是
(2008年)关于司法职业,下列哪一选项是错误的?()
系统是由两个或两个以上要素组成的。()
汉代兴起的一种以吹管和打击乐器为主,兼有歌唱的器乐合奏形式是()。
《劳动合同法》规定,劳动者在试用期内提前三日通知用人单位,可以解除劳动合同。()
你是某小区的监控管理人员,一位业主向你反映自己在此小区下车后发现包落在了出租车上,但是没有记住车牌号,包内有现金和银行卡,因此想向你调取当时的监控录像。然而按规定调取监控需要物业经理同意。此时却联系不上物业经理。你会怎么办?
轨道:火车:行驶
最新回复
(
0
)