首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,λ1,λ2,λ3是A的三个不同的特征值,对应的特征向量分别为α1,α2,α3,令β=α1+α2+α3。 证明:向量组β,Aβ,A2β线性无关;
设A为三阶矩阵,λ1,λ2,λ3是A的三个不同的特征值,对应的特征向量分别为α1,α2,α3,令β=α1+α2+α3。 证明:向量组β,Aβ,A2β线性无关;
admin
2017-02-13
101
问题
设A为三阶矩阵,λ
1
,λ
2
,λ
3
是A的三个不同的特征值,对应的特征向量分别为α
1
,α
2
,α
3
,令β=α
1
+α
2
+α
3
。
证明:向量组β,Aβ,A
2
β线性无关;
选项
答案
设k
1
,k
2
,k
3
是实数,满足k
1
β+k
2
AB+k
3
A
2
β=0,根据已知有Aα
i
=λ
i
α
i
,(i=1,2,3),所以 AB=Aα
1
+Aα
2
+Aα
3
=λ
1
α
1
+λ
2
α
2
+λ
3
α
3
, A
2
β=λ
1
2
α
1
+λ
2
2
α
2
+λ
3
2
α
3
, 将上述结果代入k
1
β+k
2
AB+k
3
A
2
B=0可得 (k
1
+k
2
λ
1
+k
3
λ
1
2
)α
1
+(k
1
+k
2
λ
2
+k
3
λ
2
2
)α
2
+(k
1
+k
2
λ
3
+k
3
λ
3
2
)α
3
)α
3
=0。 α
1
,α
2
,α
3
是三个不同特征值对应的特征向量,则三个向量必定线性无关,因此 [*] 由于该线性方程组的系数矩阵的行列式[*]≠0,因此k
1
=k
2
=k
3
=0,故β,Aβ,A
2
β线性无关。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/yUH4777K
0
考研数学三
相关试题推荐
设矩阵A的伴随矩阵A*=且ABA-1=BA-1+3E,其中E是4阶单位矩阵,求矩阵B.
已知向量组(I):α1,α2,α3;(Ⅱ):α1,α2,α3,α4;(Ⅲ):α1,α2,α3,α4,α5.如果各向量组的秩分别为r(I)=r(II)=3,r(Ⅲ)=4.证明向量组α1,α2,α3,α5-α4的秩为4.
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向节,其中α2,α3,α4线性无关,α1=2α2-α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.β可由α1,α2,α3线性表示,但表示式不唯一,并求出表示式
设二次型f(x1,x2,x3)=XTAX=ax12+2x22-2x32+2bx1x3(b>0),其中二次型的矩阵A的特征值之和为1,特征值之积为-12.利用正交变换将二次型f化为标准形,并写出所用的正交变换和对应的正交矩阵.
求点(0,a)到曲线x2=4y的最近距离.
A、2xe-xB、(一x2+2x)e-xC、e-xD、(2x一1)e-xC一方面,另一方面,比较两个计算结果可知应选C.
设f(x)=xsinx+cosx,下列命题中正确的是().
已知f(x)是微分方程xf’(x)-f(x)=满足f(1)=0的特解,则∫01f(x)dx=_________.
以下四个命题中,正确的是
设f(x)=sin3x+∫—ππxf(x)dx,求∫0πf(x)dx.
随机试题
桃核承气汤中配伍桂枝的用意是
津液输布的通道是
A.珍珠B.酸枣仁C.柏子仁D.夜交藤E.合欢皮既安神,又祛风的药是
编制分部分项工程量清单与计价表的核心是()。
下列关于钻孔桩水下混凝土灌注施工正确的有()。
下列关于企业所得税税率的表述,正确的有()。
注册会计师齐惠负责对广发公司2007年度财务报表进行审计,在采购与付款循环审计中,遇到下列问题,请代为做出正确的专业判断。
[*]
1979年G1enfordMyers出版的《theArtofSoftwareTesting》一书除了介绍众多的测试经典方法之外,还向人们揭示了测试的目的是______。A)证真,而非证伪B)证伪,而非证真C)证真,且证伪D)验证程
Formorethan10yearstherehasbeenabiggerriseincarcrimethaninmostothertypesofcrime.Anaverageofmorethantwo
最新回复
(
0
)