首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1=(1,1,1)T,α2=(1,—1,—1)T,求与α1,α2均正交的单位向量β并求与向量组α1,α2,β等价的正交单位向量组。
设α1=(1,1,1)T,α2=(1,—1,—1)T,求与α1,α2均正交的单位向量β并求与向量组α1,α2,β等价的正交单位向量组。
admin
2019-03-23
91
问题
设α
1
=(1,1,1)
T
,α
2
=(1,—1,—1)
T
,求与α
1
,α
2
均正交的单位向量β并求与向量组α
1
,α
2
,β等价的正交单位向量组。
选项
答案
令β=(x
1
,x
2
,x
3
)
T
,由于β与α
1
,α
2
均正交,则可得方程组[*]解得方程组的基础解系为(0,1,—1)
T
,单位化为[*]。 欲求与向量组α
1
,α
2
,β等价的正交单位向量组,需先将α
1
,α
2
正交化(β与α
1
,α
2
已经正交,不需要再正交化)。 令 β
1
=α
1
=(1,1,1)
T
, [*] 再单位化,得(1,1,1)
T
→[*],可知向量组[*]就是与α
1
,α
2
,β等价的正交单位向量组。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/xTV4777K
0
考研数学二
相关试题推荐
设函数f(x)与g(x)在区间[a,b]上连续,证明:[∫abf(x)g(x)dx]2≤∫abf2(x)dx∫abg2(x)dx.(*)
要建一个圆柱形无盖水池,使其容积为V0m3.底的单位面积造价是周围的两倍,问底半径r与高h各是多少,才能使水池造价最低?
设a,b,c为实数,求证:曲线y=ex与y=axx+bx+c的交点不超过三个.
设z=(x2+y2),求dz与
证明
已知(2,1,1,1),(2,1,a,a),(3,2,1,a),(4,3,2,1)线性相关,并且a≠1,求a.
设A,B,C均为n阶矩阵,其中C可逆,且ABA=C-1,证明BAC=CAB.
设A=(α1,α2,α3),B=(β1,β2,β3)都是3阶矩阵.规定3阶矩阵证明C可逆的充分必要条件是A,B都可逆.
已知向量组(I):α1,α2,α3;(Ⅱ):α1,α2,α3,α4;(Ⅲ):α1,α2,α3,α4,α5.如果各向量组的秩分别为r(I)=r(II)=3,r(Ⅲ)=4.证明向量组α1,α2,α3,α5-α4的秩为4.
设A是n阶矩阵,对于齐次线性方程组(Ⅰ)Anx=0和(Ⅱ)An+1x=0,现有四个命题:①(Ⅰ)的解必是(Ⅱ)的解;②(Ⅱ)的解必是(Ⅰ)的解;③(Ⅰ)的解不是(Ⅱ)的解;④(Ⅱ)的解不是(Ⅰ)的解。以上命题中正确的是()
随机试题
在分析工作中,实际上能测量到的数字称为有效数字。
甲状腺功能亢进症患者的饮食宜给予
李某,患急性胰腺炎,今日上午8时开始补液1000ml。按60滴/分的速度输入(每毫升按15滴计算),该液体应于何时输完
在季度报告的投资组合报告中,不需要披露基金资产组合的是()。
依据《证券法》的有关规定,证券机构主要有()。
年终结转后,下列账户一定没有余额的是()。
甲、乙双方订立协议,由甲作为名义股东,代为持有乙在丙有限责任公司的股权,但投资收益由实际投资人乙享有。协议并无其他违法情形。后甲未经乙同意,将其代持的部分股权,以合理价格转让给丙公司的股东丁。丁对甲只是名义股东的事实不知情。根据公司法律制度的规定,下列表述
下列人员可以适用取保候审的是()。
习近平在博鳌亚洲论坛2018年年会开幕式上发表了主旨演讲并指出“一个国家、一个民族要振兴,就必须在历史前进的逻辑中前进、在时代发展的潮流中发展”这一改革开放40年给人们提供的珍贵启示时,使用了典故“天行有常”“应之以治则吉”,这是因为
进程访问临界区时要遵循相关准则,下列哪一项是错误的准则?()
最新回复
(
0
)