首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明方程有两个实根,并判定这两个根的范围。
证明方程有两个实根,并判定这两个根的范围。
admin
2021-07-15
99
问题
证明方程
有两个实根,并判定这两个根的范围。
选项
答案
证明方程根的存在性,可以转化为函数的零点问题,先将方程两端同乘(x-1)·(x-2)(x-3)可得 (x-2)(x-3)+2(x-1)(x-3)+3(x-1)(x-2)=0 令F(x)=(x-2)(x-3)+2(x-1)(x-3)+3(x-1)(x-2),则F(x)在(-∞,+∞)内连续,取闭区间[a,b]=[1,2],则 F(1)>0,F(2)<0 由闭区间上连续函数的零点定理可知,在(1,2)内至少存在一点x
1
,使得F(x
1
)=0. 再取[a,b]=[2,3]则 F(2)<0,F(3)>0 同理可知,在(2,3)内至少存在一点x
2
,使得F(x
2
)=0 易见x
1
≠x
2
,由于F(x)=0为一元二次方程,根据代数知识可知,一元二次方程至多有两个实根,因此x
1
,x
2
就是原方程的两个不同实根,且分别位于(1,2)与(2,3)内。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/wmy4777K
0
考研数学二
相关试题推荐
设A是n阶矩阵,(E+A)x=0只有零解,则下列矩阵间乘法不能交换的是()
[*]
设a,b,n都是常数,.已知存在,但不为零,求n的最大值及相应的a,b的值.[img][/img]
设函数f(x)在区间(一δ,δ)内有定义,若当x∈(一δ,δ)时,恒有|f(x)|≤x2,则x=0必是f(x)的()
微分方程yy〞-2(yˊ)2=0的通解是[].
已知二次型f(x1,x2,x3)=(1-a)x12+(1-a)x22+2x32+2(1+a)x1x2的秩为2.(1)求a.(2)求作正交变换X=QY,把f(x1,x2,x3)化为标准形.(3)求方程f(x1,x2,x3)=0的解.
设C1,C2是任意两条过原点的曲线,曲线C介于C1,C2之间,如果过C上任意一点P引平行于χ轴和y轴的直线,得两块阴影所示区域A,B有相等的面积,设C的方程是y=χ2,C1的方程是y=χ2,求曲线C2的方程.
设α1,α2,α3是四元非齐次线性方程组AX=b的三个解向量,且r(A)=3,α1=[1,2,3,4]T,α2+α3=[0,1,2,3]T,k是任意常数,则方程组AX=b的通解是()
设D=是正定矩阵,其中A,B分别是m,n阶矩阵.记P=(1)求PTDP.(2)证明B-CTA-1C正定.
在曲线y=(χ-1)2上的点(2,1)处作曲线的法线,由该法线、χ轴及该曲线所围成的区域为D(y>0),则区域D绕χ轴旋转一周所成的几何体的体积为().
随机试题
人类最早出现的一种诉讼形式为
肝硬化最常见的并发症是
以下疾病是由珠蛋白合成障碍所致的是
房屋他项权利登记应由()申请。
下列关于会计电算化的基本要求,说法正确的有()。
保险营销员应当在所属保险公司授权范围内从事保险营销活动,自觉接受( )的管理,履行委托协议约定的义务。
现代企业制度的基本特征不包括()。
第一段“其用心”所指的,符合文意的一项是:下面列举的历史变革,不属于“原地不动地画圆圈”的一项是:
甲因停车收费与保安乙发生冲突,用刀将乙刺死,甲在检察机关准备提起公诉期间因病死亡,检察机关遂做出撤销案件的决定。下列表述正确的是()。
在最坏情况下,堆排序需要比较的次数为【】。
最新回复
(
0
)