首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设齐次线性方程组有基础解系β1=[b11,b12,b13,b14]T,β2=[b21,b22,b23,b24]T,记α1=[a11,a12,a13,a14]T,α2=[a21,a22,a23,a24]T.证明:向量组α1,α2,β1,β2线性无关.
设齐次线性方程组有基础解系β1=[b11,b12,b13,b14]T,β2=[b21,b22,b23,b24]T,记α1=[a11,a12,a13,a14]T,α2=[a21,a22,a23,a24]T.证明:向量组α1,α2,β1,β2线性无关.
admin
2021-07-27
62
问题
设齐次线性方程组
有基础解系β
1
=[b
11
,b
12
,b
13
,b
14
]
T
,β
2
=[b
21
,b
22
,b
23
,b
24
]
T
,记α
1
=[a
11
,a
12
,a
13
,a
14
]
T
,α
2
=[a
21
,a
22
,a
23
,a
24
]
T
.证明:向量组α
1
,α
2
,β
1
,β
2
线性无关.
选项
答案
由题设条件:β
1
,β
2
线性无关,r(α
1
,α
2
)=2,α
1
,α
2
线性无关,且β
1
,β
2
是方程组的解,满足α
i
T
β
j
=0(i=1,2,j=1,2). [*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/wQy4777K
0
考研数学二
相关试题推荐
设f(x)可导,证明:f(x)的两个零点之间一定有f(x)+f’(x)的零点.
设A为m×n矩阵,B为n×m矩阵,且m>n,则必有()
设有齐次线性方程组试问a取何值时,该方程组有非零解,并求出其通解.
设n阶矩阵A,B等价,则下列说法中不一定成立的是()
设为正项级数,则下列结论正确的是()
设α0是A的特征向量,则α0不一定是其特征向量的矩阵是
设常数k>0,函数在(0,+∞)内零点个数为()
设f(x)是二阶常系数非齐次线性微分方程y’’+Py’+qy=sin2x+2ex的满足初始条件f(0)=f’(0)-0的特解,则当x→0时,()
已知向量组(I)α1,α2,α3,α4线性无关,则与(I)等价的向量组是()
设A是4×5矩阵,ξ1=[1,一1,1,0,0]T,ξ2=[一1,3,一1,2,0]T,ξ3=[2,1,2,3,0]T,ξ4=[1,0,一1,l,-2]T都是齐次线性方程组Ax=0的解,且Ax=0的任一解向量均可由ξ1,ξ2,ξ3,ξ4线性表出,若k1,k
随机试题
属于营利性组织的是()
ItgivesChinesesymbolsanendearingquality,somethingChinesemoviesdonotachievebecausetheyreachonlylimitedaudiences
关于表皮颗粒层细胞的结构特征,哪项是错误的
下列关于休克代偿期微循环的变化,说法是错误的是
A、破瘀散结B、理气行滞C、先攻后补D、攻补兼施E、先补后攻久病体弱的癥瘕患者,其治法是
2015年3月,某酒厂(增值税一般纳税人)生产白酒100吨全部对外销售,取得不含税销售额480万元,同时收取品牌使用费15万元,销售白酒时收取包装物押金5万元,本月没收3个月前销售白酒时收取的包装物押金3万元。该酒厂当月应纳消费税()万元。
计算机应用最广泛的领域是()。
关系R和关系S的并运算是______。
Thebesttitle(标题)forthisarticlecouldbe______.Howaboutthesizeofthenewtrousers?
A、Allofthemlandedsafeandsound.B、Noneofthemsurvivedtheincident.C、Somewerewounded,buttherewerenodeaths.D、All
最新回复
(
0
)