首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
确定常数a,使向量组α1=(1,1,a)T,α2=(1,a,1)T,α3=(a,1,1)T可由向量组β1=(1,1,a)T,β2=(一2,a,4)T,β3=(一2,a,a)T线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线性表示。
确定常数a,使向量组α1=(1,1,a)T,α2=(1,a,1)T,α3=(a,1,1)T可由向量组β1=(1,1,a)T,β2=(一2,a,4)T,β3=(一2,a,a)T线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线性表示。
admin
2018-02-07
72
问题
确定常数a,使向量组α
1
=(1,1,a)
T
,α
2
=(1,a,1)
T
,α
3
=(a,1,1)
T
可由向量组β
1
=(1,1,a)
T
,β
2
=(一2,a,4)
T
,β
3
=(一2,a,a)
T
线性表示,但向量组β
1
,β
2
,β
3
不能由向量组α
1
,α
2
,α
3
线性表示。
选项
答案
记A=(α
1
,α
2
,α
3
),B=(β
1
,β
2
,β
3
)。因为β
1
,β
2
,β
3
不能由α
1
,α
2
,α
3
线性表示,所以r(A)<3(若r(A)=3,则任何三维向量都可以由α
1
,α
2
,α
3
线性表示),从而 |A|=[*]39=一(a+2)(a一1)
2
=0, 即a=一2或1。 当a=一2时, (B,A)=[*]40 考虑线性方程组Bx=α
2
。因为系数矩阵的秩为2,增广矩阵的秩为3,所以线性方程组Bx=α
2
无解,即α
2
不能由β
1
,β
2
,β
3
线性表出,这与题中的已知条件矛盾,故a=一2不合题意。当a=1时,α
1
=α
2
=α
3
=β
1
=(1,1,1)
T
,则α
1
=α
2
=α
3
=β
1
+0.β
2
+0.β
3
,说明α
1
,α
2
,α
3
,可由β
1
,β
2
,β
3
线性表示;而方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β
2
无解(系数矩阵的秩为1,增广矩阵的秩为2),所以β
2
不能由α
1
,α
2
,α
3
线性表示。故a=1符合题意。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/tXk4777K
0
考研数学二
相关试题推荐
若A是n阶实对称矩阵,证明:A2=O与A=O可以相互推出.
设函数x=f(y)、反函数y=f-1(x)及fˊ(f-1(x)),f〞(f-1(x))都存在,且fˊ(f-1(x))≠0,求证:
函数在点x=1处[].
某商品的价格P与需求量Q的关系为P=10-Q/5(1)求需求量为20及30时的总收益R、平均收益R及边际收益Rˊ;(2)Q为多少时总收益最大?
用拉格朗日定理证明:若,且当x>0时,fˊ(x)>0,则当x>0时,f(x)>0.
设有函数试分析在点x=0处,k为何值时,f(x)有极限;k为何值时,f(x)连续;k为何值时,f(x)可导.
设向量组α1,α2,α3线性无关,则下列向量组线性相关的是
(2008年试题,22)设n元线性方程组Ax=b,其中(I)证明行列式|A|=(n+1)an;(Ⅱ)a为何值时,方程组有唯一解?求x1;(Ⅲ)a为何值时,方程组有无穷多解?求通解.
求函数在区间(0,2π)内的间断点,并判断其类型.
设有一容器由平面z=0,z=1及介于它们之间的曲面S所围成.过z轴上点(0,0,z)(0≤z≤1)作垂直于z轴的平面与该立体相截得水平截面D(z),它是半径的圆面.若以每秒v0体积单位的均匀速度往该容器注水,并假设开始时容器是空的.求灌满容器所需时间.
随机试题
A.苯氧酸类B.多不饱和脂肪酸类C.粘多糖及多糖类D.烟酸类E.HMG-COA还原酶抑制剂
女性,22岁,口服不详农药60ml后,呕吐,流涎,走路不稳,视物模糊,呼吸困难,口中有大蒜样气味。最重要的实验室检查是
会计法律制度着重于调整会计人员的外在行为和结果的合法化;会计职业道德则不仅要求调整会计人员的外在行为,还要求调整会计人员内在的精神世界。这两者的区别可以概括为()。
以下属于丹霞风光的是()。
小王拿刀去砍小李,但因没有瞄准而砍中路人老刘,并致老刘死亡。则关于小王的行为,下列哪些选项是正确的?()
周某持炸药到甲家实施报复,民警接到报警后到达现场,发现周某正欲点燃炸药引爆,立即开枪。以下说法正确的是()。
(2013年真题)甲为自己房屋使用的便利与乙签订地役权合同,约定五年内乙不得加盖楼房,甲支付5万元。合同签订后,双方办理了登记手续。三年后甲去世,房屋由丙继承。同年,乙将楼房卖给丁,随后丁加盖楼房,遭丙阻止。在本案中
从工程管理角度,软件设计一般分为两步完成,它们是
LeeBeaty:Your"HealthForLife"articlesgiveexcellentadviceonsimplelifestylechangestoimprovehealth.Wheneverposs
Heforgotabout______himtoattendmywife’sbirthdayparty.
最新回复
(
0
)