首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2013年)设二次型f(χ1,χ2,χ3)=2(a1χ1+a2χ2+a3χ3)+(b1χ1+b2χ2+b3χ3)2,记 (Ⅰ)证明二次型f对应的矩阵为2ααT+ββT. (Ⅱ)若α,β正交且均为单位向量,证明f在正交变换下的标准形为
(2013年)设二次型f(χ1,χ2,χ3)=2(a1χ1+a2χ2+a3χ3)+(b1χ1+b2χ2+b3χ3)2,记 (Ⅰ)证明二次型f对应的矩阵为2ααT+ββT. (Ⅱ)若α,β正交且均为单位向量,证明f在正交变换下的标准形为
admin
2016-05-30
120
问题
(2013年)设二次型f(χ
1
,χ
2
,χ
3
)=2(a
1
χ
1
+a
2
χ
2
+a
3
χ
3
)+(b
1
χ
1
+b
2
χ
2
+b
3
χ
3
)
2
,记
(Ⅰ)证明二次型f对应的矩阵为2αα
T
+ββ
T
.
(Ⅱ)若α,β正交且均为单位向量,证明f在正交变换下的标准形为
选项
答案
[*] 又2αα
T
+ββ
T
为对称矩阵,所以二次型f的矩阵为2αα
T
+ββ
T
. (Ⅱ)记矩阵A=2αα
T
+ββ
T
.由于α,β正交且为单位向量,即α
T
α=1,β
T
β=1,α
T
β=β
T
α=0,所以 Aα=(2αα
T
+ββ
T
)α=2α, Aβ=(2αα
T
+ββ
T
)β=β, 于是λ
1
=2,λ
2
=1是矩阵A的特征值.又 r(A)=r(2αα
*
+ββ
*
)≤r(2αα
*
)+r(ββ
*
)≤2, 所以λ
3
=0是矩阵A的特征值.由于f在正交变换下的标准形中各变量平方项的系数为A的特征值,故f在正交变换下的标准形为2y
1
2
+y
2
2
.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/t734777K
0
考研数学二
相关试题推荐
设向量组α1,α2,α3线性无关,β1不可由α1,α2,α3线性表示,而β2可由α1,α2,α3线性表示,则下列结论正确的是().
(Ⅰ)设n维向量α1,α2,α3,α4线性无关.βi=αi+tα4(i=1,2,3),证明:β1,β2,β3对任意t都线性无关;(Ⅱ)设n维向量α1,α2,α3,α4满足=0,βi=αi+iλiξ,i=1,2,3,4,问λi(i=1,2,3,4)
已知α1=(1,2,3)T,α2=(-2,1,-1)T和β1=(4,-2,α)T,β2=(7,b,4)T是等价向量组,则参数a,b应分别为()。
A为四阶方阵,方程组AX=0的通解为x=k1(1,0,1,0)T+k2(0,0,0,1)T,A的伴随矩阵为A*,则秩(A*)*=().
设y1(x),y2(x)为二阶齐次线性微分方程y”+P(x)y’+q(x)y=0的两个特解,y1≠0,y2≠0,则y=c1y1(x)+c2y2(x)(其中c1,c2为任意常数)为该方程通解的充要条件为().
设a=2i-j+k,b=i+3j-k,试在a,b所确定的平面内,求一个与a垂直的单位向量.
设向量r=x2zi+xy2j+yz2k,试求散度divr在点P(2,2,1)处:(1)沿曲面x2+y2+z2=9外法线方向的方向导数;(2)最大变化率.
设求a,b的值.
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:当ξTξ=1时,A是不可逆矩阵.
随机试题
用比值判别法判别下列级数的敛散性:
计算机软件可分为系统软件和应用软件两大类。()
下半口义齿,舌侧为铸造金属基托,唇颊侧为塑料基托连接,该义齿蜡型完成后,进行塑料成形基托塑料充填时应注意的事项中,下列哪一项不是
三大营养物质(多糖、蛋白、脂)在体内的合成过程中,我们往往发现用于合成生物大分子的单体要和一种高能分子结合,变成该单体的活化形式,然后该活化形式在酶的作用下发生缩合反应,例如糖原的合成中葡萄糖和UTP结合生成UDPG。那么在蛋白质的合成过程中,哪种分子发挥
患者,女性,48岁,缺失数年,下颌无牙列缺损,面大面积银汞充填物,伸长超出平面4mm。松动(-),叩痛(-)。可摘局部义齿戴人后,不用检查
对尿液颜色描述正确的是
熬骨头汤时,为提高骨头中钙质的溶解度,可加入少量()。
会计软件可以提供反记账功能。()
下列关于无线局域网802.11标准的描述中,错误的是
A、Sixteenpeopledrowned.B、ItstoppedinaGreekisland.C、Therewere15peopleonboard.D、ItstartedfromTurkey.D题目问关于移民船只的
最新回复
(
0
)