首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设λ1,λ2,λ3是三阶矩阵A的三个不同特征值,α1,α2,α3分别是属于特征值λ1,λ2,λ3的特征向量,若α1,A(α1+α2),A2(α1+α2+α3)线性无关,则λ1,λ2,λ3满足______.
设λ1,λ2,λ3是三阶矩阵A的三个不同特征值,α1,α2,α3分别是属于特征值λ1,λ2,λ3的特征向量,若α1,A(α1+α2),A2(α1+α2+α3)线性无关,则λ1,λ2,λ3满足______.
admin
2019-08-11
66
问题
设λ
1
,λ
2
,λ
3
是三阶矩阵A的三个不同特征值,α
1
,α
2
,α
3
分别是属于特征值λ
1
,λ
2
,λ
3
的特征向量,若α
1
,A(α
1
+α
2
),A
2
(α
1
+α
2
+α
3
)线性无关,则λ
1
,λ
2
,λ
3
满足______.
选项
答案
λ
2
λ
3
≠0
解析
令x
1
α
1
+x
2
A(α
1
+α
2
)+x
3
A
2
(α
1
+α
2
+α
3
)=0,即
(x
1
+λ
1
x
2
+λ
1
2
x
3
)α
1
+(λ
2
x
2
+λ
2
x
3
2
)α
2
+λ
3
2
x
3
α
3
=0,则有
x
1
+λ
1
x
2
+λ
1
2
x
3
=0,λ
1
x
3
+λ
2
2
x
3
=0,λ
3
2
x
3
=0,因为x
1
,x
2
,x
3
只能全为零,所以
λ
2
λ
3
≠0.
转载请注明原文地址:https://www.kaotiyun.com/show/sVN4777K
0
考研数学二
相关试题推荐
设n为正整数,利用已知公式In=sinnxdx=cosnxdx=,其中求下列积分:(Ⅰ)Jn=sinnxcosnxdx;(Ⅱ)Jn=∫1(x2-1)ndx.
求e-x2带皮亚诺余项的麦克劳林公式.
设f(x)在(一∞,+∞)上可导,且其反函数存在为g(x).若∫0f(x)g(t)dt+∫0xf(t)dt=xex—ex+1,则当一∞<x<+∞时f(x)=____________.
设f(x)在(一∞,+∞)上可导,且其反函数存在为g(x).若∫0f(x)g(t)dt+∫0xf(t)dt=xex-ex+1,则当一∞<x<+∞时.f(x)=______.
设n阶矩阵A的秩为n一2,α1,α2,α3是非齐次线性方程组Ax=b的三个线性无关的解,则Ax=b的通解为___________.
设A是3阶矩阵,λ1,λ2,λ3是A的3个不同的特征值,对应的特征向量分别是ξ1,ξ2,ξ3,令β=ξ1+ξ2+ξ3.证明:向量组β,Aβ,A2β线性无关.
(99年)曲线在点(0,1)处的法线方程为________.
(2003年)设三阶方阵A、B满足A2B-A-B=E,其中E为三阶单位矩阵,A=,则|B|=______.
设3阶方阵A按列分块为A=[α1,α2,α3]。已知秩(A)=3,则3阶方阵B=[α1+2α2+α32α1+(2-a)α2+3α3,3α1+3α2]的秩=______.
(06)设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解.(Ⅰ)求A的特征值与特征向量;(Ⅱ)求正交矩阵Q和对角矩阵A,使得QTAQ=A.
随机试题
下列关于绝缘油的描述,正确的是
根据规定,下列经济事项不可以使用现金结算的有()。
关于各类风险的判断,表述正确的是()。[2017年11月真题]
下列属于纳税人需要填写《增值税预缴税款表》的情形有()。
经济体制的实质是()。
企业培训的重点应根据______来确定。
许多人认为,坐火车比乘飞机更安全。这种社会判断的成因是()
关于法律实施,下列说法正确的是
在窗体中有一个命令按钮Commandl,对应的事件代码如下:PrivateSubCommandl_nter()DimnumAsIntegerDimaAsInteger
KillingMeMicrosoftlywithPowerpointPowerpoint,thepublic-speakingapplicationincludedintheMicrosoftOfficesoftware
最新回复
(
0
)