首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设PQ为抛物线y=的弦,它在此抛物线过P点的法线上,求PQ长度的最小值.
设PQ为抛物线y=的弦,它在此抛物线过P点的法线上,求PQ长度的最小值.
admin
2019-08-23
74
问题
设PQ为抛物线y=
的弦,它在此抛物线过P点的法线上,求PQ长度的最小值.
选项
答案
令P(a,[*]),因为y=[*]关于y轴对称,不妨设a>0. y′(a)=[*],过P点的法线方程为y-[*](χ-a), 设Q(b,[*]),因为Q在法线上,所以[*](b-a),解得b=-a-[*]. PQ的长度的平方为L(a)=(b-a)
2
+[*], 由L′(a)=8a[*]=0得a=2[*]为唯一驻点,从而为最小值点, 故PQ的最小距离为[*].
解析
转载请注明原文地址:https://www.kaotiyun.com/show/rzA4777K
0
考研数学二
相关试题推荐
厂商的总收益函数和总成本函数分别为R(Q)=30Q-3Q2C(Q)=Q2+2Q+2厂商追求最大利润,政府对产品征税,求:(1)厂商纳税前的最大利润及此时的产量和价格.(2)征税收益最大值及此时的税率t.(3)厂商纳税后的最大利润及此时产品的价格
已知η是Ax=b的一个特解,ξ1,ξ2,…,ξn-r是对应齐次方程组Ax=0的基础解系.证明:η,η+ξ1,η+ξ2,…,η+ξn-r,是Ax=b的n-r+1个线性无关解向量;
设f(χ)在(0,1)内有定义,且eχf(χ)与e-f(χ)在(0,1)内都是单调增函数,证明:f(χ)在(0,1)内连续.
证明:当χ>0时,arctanχ+.
在集合{1,2,3}中取数两次,每次任取一个数,作不放回抽样,以X与Y分别表示第一次和第二次取到的数,(1)求(X,Y)联合概率分布;(2)求在X=2的条件下关于Y的边缘分布律.
设f(x)在x0处n阶可导,且f(n)(x0)=0(m=1,2,…,n一1),f(n)(x0)≠0(n≥2),证明:(1)当n为偶数且f(n)(x0)<0时f(x)在x0处取得极大值;(2)当n为偶数且f(n)(x0)>0时f(x)在x0处取得极小值.
设α1,α2,…,αn为n个线性无关的n维向量,且与向量β正交.证明:向量β为零向量.
如果秩r(α1,α2,…,αs)=r(α1,α2,…,αs,αs+1),证明αs+1可由α1,α2,…,αs线性表出.
设xOy平面第一象限中有曲线Γ:y=y(x),过点A(0,—1),y′(x)>0.又M(x,y)为Γ上任意一点,满足:弧段的长度与点M处Γ的切线在x轴上的截距之差为—1.导出y=y(x)满足的积分、微分方程.
(1991年)如图2.8,χ轴上有一线密度为常数μ,长度为l的细杆,有一质量为m的质点到杆右端的距离为a,已知引力系数为k,则质点和细杆之间引力的大小为【】
随机试题
A.近曲小管B.髓袢降支细段C.髓袢升支粗段D.远曲小管E.集合管肾小球滤液中的氨基酸被重吸收的部位是()
下列为抗痛风的药物是
可引起儿童牙釉质发育不良和牙齿着色变黄的药物是()。
患者,女,52岁。近来自觉咽中不适,如有物梗阻,吐之不出,咽之不下,精神抑郁,胸胁胀满,舌苔白腻,脉弦滑。中医称之为“梅核气”,治疗时常选用的方剂是()。
依据房产计税余值计税的房产税的税率为__________;依据房产租金收入计税的,税率为__________。()
游客的意见、要求、建议乃至投诉,其他旅游服务部门在接待工作中出现的问题以及他们的建议和要求,一般是通过导游员向旅行社传递直至上报旅游行政管理部门,这体现了导游服务工作纽带作用中的()。
设基带信号频谱如图所示,以下模拟调制后的频谱中,属于单边带调幅(SSB)的是()。
在毕业考试结束后,班长想从老师那里打听成绩。班长说:“老师,这次考试不太难,估计我们班同学的成绩都在70分以上吧。”老师说:“你的前半句话不错,后半句话不对。”根据老师的意思,下列哪项必为事实?()
终止禅让制的是( )。
一副扑克牌除大小王之外有52张,从中取三张,使得三张点数之和为26,且第三张点数不小于前两张点数之和。若A=1点,B=2点,……,J=11点,Q=12点,K=13点,点数相同花色不同为不同取法,那么共有多少种不同取法?
最新回复
(
0
)