首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)在[a,b]上连续,在(a,b)内二阶可导,连接点A(a,f(a)),B(b,f(b))的直线与曲线y=f(χ)交于点C(c,f(c))(其中a<c<b).证明:存在ξ∈(a,b),使得f〞(ξ)=0.
设f(χ)在[a,b]上连续,在(a,b)内二阶可导,连接点A(a,f(a)),B(b,f(b))的直线与曲线y=f(χ)交于点C(c,f(c))(其中a<c<b).证明:存在ξ∈(a,b),使得f〞(ξ)=0.
admin
2019-08-23
78
问题
设f(χ)在[a,b]上连续,在(a,b)内二阶可导,连接点A(a,f(a)),B(b,f(b))的直线与曲线y=f(χ)交于点C(c,f(c))(其中a<c<b).证明:存在ξ∈(a,b),使得f〞(ξ)=0.
选项
答案
由微分中值定理,存在ξ
1
∈(a,c),ξ
2
∈(c,b),使得 [*] 因为点A,B,C共线,所以f′(ξ
1
)=f′(ξ
2
), 又因为f(χ)二阶可导,所以再由罗尔定理,存在ξ∈(ξ
1
,ξ
2
)[*](a,b),使得f〞(ξ)=0.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/qzA4777K
0
考研数学二
相关试题推荐
设有矩阵Am×n,Bn×m,且Em+AB可逆.设其中利用上题证明P可逆,并求P-1.
设f(x)在[0,1]上连续,在(0,1)内可导,f(0)=0,,f(1)=0.证明:对任意的k∈(-∞,+∞),存在ξ∈(0,η),使得f’(ξ)-k[f(ξ)-ξ]=1.
设f(x)在[0,1]上连续,在(0,1)内可导,f(0)=0,,f(1)=0.证明:存在,使得f(η)=η;
设f(χ)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1),证明:存在ξ,η∈(0,1),使得f′(ξ)+f′(η)=0.
设f(x)在[a,b]上连续,在(a,b)上可导,且f(A)=f(B)=1,证明:必存在ξ,η∈(a,b),使得eη-ξ[f(η)+f’(η)]=1。
设f(x)在区间[一a,a](a>0)上具有二阶连续导数,f(0)=0.(1)写出f(x)的带拉格朗日余项的一阶麦克劳林公式;(2)证明:在[一a,a]上存在η,使a3f"(η)=3∫一aaf(x)dx.
随机试题
刺激生长激素分泌最重要的因素是
慢性间质性肾炎出现肾小管功能不全包括
绿脓杆菌感染的脓液特点是
警报装置与消防应急疏散指示标志不宜在同一面墙上,安装在同一面墙上时,距离应大于()。
某增值税一般纳税企业单独设置了“预收账款”和“预付账款”账户,当年5月该企业发生下列经济业务:(1)5日,收到N公司预付的购货款34000元,已存入银行。(2)10日,收到M公司货物结算单,其中材料价款50000元,增值税8500
下列选项关于银行从业人员行为规范,说法正确的有()。
教师比较合理的知识结构应该包括()
下列关于生物的生殖、发育的叙述中正确的是()。
根据《侵权责任法》规定,民用航空器造成他人损害的,民用航空器经营者的免责事由是()。
无法在合理时间内用常规【21】工具进行捕捉、管理和【22】并整理成可解读形式的数据集合称作“大数据(bigdata或megadata)”。对于“大数据”,高德纳咨询公司(GartnerGroup)给出的定义是:“大数据”是大量、高速、及/或
最新回复
(
0
)