首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在闭区间[一1,1]上具有三阶连续导数,且f(-1)=0,f(1)=1,f’(0)=0,证明:在[一1,1]内存在ξ,使得f’"(ξ)=3.
设f(x)在闭区间[一1,1]上具有三阶连续导数,且f(-1)=0,f(1)=1,f’(0)=0,证明:在[一1,1]内存在ξ,使得f’"(ξ)=3.
admin
2015-07-22
78
问题
设f(x)在闭区间[一1,1]上具有三阶连续导数,且f(-1)=0,f(1)=1,f’(0)=0,证明:在[一1,1]内存在ξ,使得f’"(ξ)=3.
选项
答案
f(x)=f(x
0
)+f’(x
0
)(x—x
0
)+[*] (x
0
)(x—x
0
)
2
+[*] (η)(x—x
0
)
3
.取x
0
=0,x=1代入, f(1)=f(0)+[*]f"(0)(1—0)
2
+[*]f"(η
1
)(1—0)
3
,η
1
∈(0,1). ① 取x
0
=0,x=-1代入, [*] 因为f"(x)在[一1,1]上连续,则存在m和M,使得[*]∈[一1,1],有m≤f"(x)≤M, m≤f"’(η
1
)≤M,m≤f"’(η
2
)≤[*] [f"’(η
1
)+f"’(η
2
)]≤M, ④ ③代入④式,有m≤3≤M,由介值定理,[*]∈E-1,1],使得f"’(ξ)=3.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/quU4777K
0
考研数学三
相关试题推荐
1990年4月4日,第七届全国人大第三次会议审议并通过《中华人民共和国香港特别行政区基本法》,这是“一国两制”方针由构想变为现实进程中里程碑式的事件。30年星移斗转,香港基本法经历了实践的充分检验,展现出强大生命力。实践证明,这是一部能够为“一国两制”伟
将函数分别展开成正弦级数和余弦级数.
求下列函数的极值:(1)f(x,y)=6(x-x2)(4y-y2);(2)f(x,y)=e2x(x+y2+2y);(4)f(x,y)=3x2y+y3-3x2-3y2+
求下列函数在指定区间上的最大值、最小值:
设u=f(x,y,z)有连续的一阶偏导数,又函数y=y(x)及z=z(x)分别由下列两式确定:exy-xy=2和
在“充分而非必要”、“必要而非充分”和“充分必要”三者中选择一个正确的填人下列空格内:(1)f(x)在点x。连续是f(x)在点x。可导的__________条件;(2)f(x)在点x。的左导数fˊ-(x。)及右导数fˊ+=(x。)都存在且相等是f(x)
设A=,而n≥2为正整数,则An-2An-1=___________.
“对任意给定的ε∈(0,1),总存在正整数N,当n>N时,恒有|xn-a|≤2ε”是数列{xn}收敛于a的
设T=cosnθ,θ=arccosx,求
随机试题
简述中国古代“知行合一”说的特点。
与情绪型的谈判对手的谈判禁忌是()
引起急性上呼吸道感染的主要病原为
结果主导型的考评方法不太适合对()工作岗位人员的考评。
班主任工作内容的中心环节是()。
因为种子在土壤中发芽,所以种子的萌发不需要光照。()
可持续发展
在某住宅小区的居民中,大多数中老年教员都办理了人寿保险,所有买了四居室以上住房的居民都办理了财产保险。而所有办理了人寿保险的都没办理财产保险。如果在题干的断定中再增加以下断定:“所有的中老年教员都办理了人寿保险”,并假设这些断定都是真的,那么,以下哪项
某资本主义企业在一年内投入的不变资本、可变资本分别为400万美元、100万美元,剩余价值为400万美元,则该企业在该年的剩余价值率和利润率分别为()
白盒法测试程序时常按照给定的覆盖条件选取测试用例。(50)覆盖比(51)覆盖严格,它使得每一个判定的每一条分支至少经历一次。(52)覆盖既是判定覆盖,又是条件覆盖,但它并不保证使各种条件都能取到所有可能的值。
最新回复
(
0
)