首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三元非齐次方程组的系数矩阵A的秩为1,已知η1,η2,η3是它的三个解向量,且η1+η2=[1,2,3]T,η2+η3=[2,-1,1]T,η3+η1=[0,2,0]T.求该非齐次方程组的通解.
设三元非齐次方程组的系数矩阵A的秩为1,已知η1,η2,η3是它的三个解向量,且η1+η2=[1,2,3]T,η2+η3=[2,-1,1]T,η3+η1=[0,2,0]T.求该非齐次方程组的通解.
admin
2017-06-14
71
问题
设三元非齐次方程组的系数矩阵A的秩为1,已知η
1
,η
2
,η
3
是它的三个解向量,且η
1
+η
2
=[1,2,3]
T
,η
2
+η
3
=[2,-1,1]
T
,η
3
+η
1
=[0,2,0]
T
.求该非齐次方程组的通解.
选项
答案
r(A)=1,AX=b的通解应为k
1
ξ
1
+k
2
ξ
2
+η,其中对应齐次方程AX=0的解为 ξ
1
=(η
1
+η
2
)-(η
2
+η
3
)=η
1
-η
3
=[-1,3,2]
T
, ξ
2
=(η
2
+η
3
)-(η
3
+η
1
)=η
2
-η
1
=[2,-3,1]
T
. 因ξ
1
,ξ
2
线性无关,故是AX=0的基础解系. 取AX=b的一个特解为 η=[*](η
3
+η
1
)=[0,1,0]
T
. 故AX=b的通解为 k
1
[-1,3,2]
T
+k
2
[2,-3,1]
T
+[0,1,0]
T
,k
1
,k
1
为任意常数.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/qpu4777K
0
考研数学一
相关试题推荐
设已知线性方程组Ax=b存在2个小吲的解.求λ,a;
设n元线性方程组Ax=b,其中当a为何值时,该方程组有无穷多解,并求通解.
已知非齐次线性方程组有3个线性无关的解.证明方程组系数矩阵A的秩r(A)=2;
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2-α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
设A=(α1,α2,α3,α4)是4阶矩阵,A*为A的伴随矩阵.若(1,0,1,0)T是方程组Ax=0的一一个基础解系,则A*x=0的基础解系可为
设α1,α2,…,αs为线性方程组Ax=0的一个基础解系,β1=t1α1+t2α2,β2=t1α2+t2α3,…,βs=t1αs+t2α1,t1t2为实常数.试问t1t2满足什么关系时,β1,β2,…,βs,也为Ax=0的一个基础解系.
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2则α1,A(α1+α2)线性无关的充分必要条件是
设a1,a2,…,at为AX=0的一个基础解系,β不是AX=0的解,证明:β,β+a1,β+a2,…,β+at线性无关.
如果0<β<α<π/2,证明
随机试题
通过沪深证券交易所交易系统发行和交易的债券是()。
操作止回阀执行机构,可开、关止回阀。()
下列哪类人不属于高危妊娠范围()
上颌第一磨牙各根管口的形态是
使用成本分析模式确定现金持有规模时,在最佳现金持有量下,现金的()。
甲公司经营杠杆系数为1.5,财务杠杆系数为2,在销售收入增长40%的情况下,每股收益增长()倍。
在一段用汇编语言编写的程序里,如果多次调用另一段程序,用宏指令要比用子程序实现起来()。
有两个数a和b,其中a的1/5是b的3倍,那么a:b的值是:
生产力反映的是()。
在CPU执行一段程序的过程中,Cache的存取次数为4600次,由主存完成的存取次数为400次。若Cache的存取周期为5ns,CPU的平均访问时间为6.6ns,则主存的存取周期为(3)ns。
最新回复
(
0
)