首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f′(lnx)=求f(x).
设f′(lnx)=求f(x).
admin
2022-08-19
1
问题
设f′(lnx)=
求f(x).
选项
答案
令ln=t,[*] 当t≤0时,f(t)=t+C
1
;当t>0时,f(t)=e
t
+C
2
.显然f′(t)为连续函数,所以f(t)也连续,于是有C
1
=1+C
2
, [*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/qkR4777K
0
考研数学三
相关试题推荐
证明:sinnxcosnxdx=2-nsinnxdx.
设一抛物线y=ax2+bx+c过点(0,0)与(1,2),且a<0,确定a,b,c,使得抛物线与x轴所围图形的面积最小.
设z=∫x+yxye-t2dt,求
设f(x)二阶可导,f(0)=0,令(1)求g’(x);(2)讨论g’(x)在x=0处的连续性.
设处处可导,确定常数a,b,并求f’(x).
设f(u)可导,y=f(x2)在x0=-1处取得增量△x=0.05时,函数增量△y的线性部分为0.15,则f’(1)=_______.
(1)求常数m,n的值,使得(2)设当x→0时,x-(a+bcosx)sinx为x的5阶无穷小,求a,b.(3)设当x→0时,f(x)=∫0x2ln(1+t)dt~g(x)=xa(ebx-1),求a,b.
设D是由点O(0,0),A(1,2)及B(2,1)为顶点构成的三角形区域,计算xdxdy.
设曲线y=xn在点(1,1)处的切线交x轴于点(ξn,0),求ξn2n.
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f”(x)|≤b,其中a,b都是非负常数,C为(0,1)内任意一点.写出f(x)在x=c处带Lagrange型余项的一阶泰勒公式;
随机试题
A.养血益气,温经通络B.养血活络,行瘀止痛C.养血祛风,散寒除湿D.补肾、强腰、壮筋骨E.调理气血,通络止痛产后遍身疼痛,或关节刺痛,按之痛甚,恶露量少、色暗,小腹疼痛拒按,舌紫暗,苔薄白,脉弦涩。其中医治法是()
我国2002年公布实施的《职业病范围和职业病患者处理办法的规定》中,已定了12种尘肺名单。其中,矽肺的致病因素是()。
根据《项目申请书通用文本说明》,一般化工建设项目可以不进行()分析。
坚实系数为10.0~18.0,适用于爆破方法开挖的岩土包括()。
管理人以自有资金参与集合计划时的特别约定包括()
验难度的要求,一般为测验总分接近常态分布()。
阅读下面材料,回答124~126题。材料一:党的作风问题,也是党的形象问题,作风不正,形象好不了,必然脱离群众、脱离实际。切不可小看了作风问题。领导干部作风好坏,做得如何,表现怎样,在有些人眼里都是“小事”、“小节”、“小问题”,看来无妨,似乎无害
低利率政策的初衷是刺激美国人迅速消费,以弥补危机带来的需求萎缩。但经历了数年的储蓄资产贬值后,相信低利率的刺激作用的边际效应已缩减到了几近于无。危机之初,开启低利率的另一个目的是为流动性紧张的金融机构提供“免费”资金,并帮助金融业补充资本。凭借零利率的借款
连续4年的统计表明,在夏令时改变的时间里比其他时间的车祸高4%。这些统计说明时间的改变严重地影响了加州司机的注意力。上面的论述基于下列哪一个假设?
在Java中,表示换行符的转义字符是
最新回复
(
0
)