首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αs,β1,β2,…,βt线性无关,其中α1,α2,…,αs是齐次方程组AX=0的基础解系.证明Aβ1,Aβ2,…,Aβt线性无关.
设α1,α2,…,αs,β1,β2,…,βt线性无关,其中α1,α2,…,αs是齐次方程组AX=0的基础解系.证明Aβ1,Aβ2,…,Aβt线性无关.
admin
2018-11-23
63
问题
设α
1
,α
2
,…,α
s
,β
1
,β
2
,…,β
t
线性无关,其中α
1
,α
2
,…,α
s
是齐次方程组AX=0的基础解系.证明Aβ
1
,Aβ
2
,…,Aβ
t
线性无关.
选项
答案
用定义法证. 设c
1
Aβ
1
+c
2
Aβ
2
+…+c
t
Aβ
t
=0.则A(cβ+cβ+…+cβ)=0即c
1
β
1
+c
2
β
2
+…+c
t
β
t
.是AX=0的一个解.于是它可以用α
1
,α
2
,…,α
s
线性表示: c
1
β
1
+c
2
β
2
+…+c
t
β
t
=t
1
α
1
+t
2
α
2
+…+t
s
α
s
, 再由α
1
,α
2
,…,α
s
,β
1
,β
2
,…,β
t
线性无关,得所有系数都为0.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/n9M4777K
0
考研数学一
相关试题推荐
设矩阵A=有一个特征值是3,求y,并求可逆矩阵P,使(AP)T(AP)为对角矩阵.
设某种零件的长度L~N(18,4),从一大批这种零件中随机取出10件,求这10件中长度在16~22之间的零件数X的概率分布、数学期望和方差.
设事件A与B相互独立,已知它们都不发生的概率为0.16,又知A发生B不发生的概率与B发生A不发生的概率相等,则A与B都发生的概率是__________.
设随机变量X1,X2,X3相互独立,且则E[X1(X1+X2-X3)]为___________.
假设X是在区间(0,1)内取值的连续型随机变量,而Y=1一X.已知P{X≤0.29}=0.75,则满足P{Y≤k}=0.25的常数k=__________.
设A是秩为3的5×4矩阵,α1,α2,α3是非齐次线性方程组Ax=b的三个不同的解,若α1+α2+2α3=(2,0,0,0)T,3α1+α2=(2,4,6,8)T,则方程组Ax=b的通解是___________.
设α1,α2,α3是4元非齐次线性方程组Ax=b的3个解向量,且秩(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=b的通解x=
(94年)设相互独立的两个随机变量X与Y具有同一分布律,且X的分布律为则随机变量Z=max{X,Y)的分布律为______.
设A,B,C是两两相互独立且三事件不能同时发生的事件,且P(A)=P(B)=P(C)=x,则使P(A∪B∪C)取最大值的x为()
A=,其中ai≠0(i=1,2,…,m),bj≠0(j=1,2,…,n),则线性方程组AX=0的基础解系含有解向量的个数是________.
随机试题
A.DNA的全保留复制机制B.DNA的半保留复制机制C.DNA的半不连续复制D.DNA的全不连续复制E.反转录作用前导链与随从链的合成说明DNA的复制方式是
A.三维成像B.自旋回波序列C.梯度回波序列D.回波平面序列E.快速反转恢复序列使用梯度翻转获得回波信号的序列是
药品检验机构为同级药品监督管理机构的直属事业单位,承担依法买施药品审批和药品质量监督检查所需的药品检验工作。()
根据勒温的领导行为理论,效率最低的是()领导方式。
纳税人签订的商品房销售合同应按照“产权转移书据”税目计缴印花税。()(2016年)
国际外汇市场的主要参与者有外汇银行、外汇经纪商、外汇交易商、客户以及相关国家的中央银行。()
物业服务费核算要点及方法包括()。
宣传决策是一个提出问题、分析问题的动态过程。()
AnswerQuestions71to80byreferringtothebriefsonfourfamouscastlesinWales,Britainonthefollowingpage.Answereach
Consumersarebeingconfusedandmisledbythehodge-podge(大杂烩)ofenvironmentalclaimsmadebyhouseholdproducts,accordingt
最新回复
(
0
)