首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是一个五阶矩阵,A*是A的伴随矩阵,若η1η2是齐次线性方程组Ax=0的两个线性无关的解,则r(A*)=____________。
设A是一个五阶矩阵,A*是A的伴随矩阵,若η1η2是齐次线性方程组Ax=0的两个线性无关的解,则r(A*)=____________。
admin
2019-01-19
87
问题
设A是一个五阶矩阵,A
*
是A的伴随矩阵,若η
1
η
2
是齐次线性方程组Ax=0的两个线性无关的解,则r(A
*
)=____________。
选项
答案
0
解析
η
1
,η
2
是齐次线性方程组Ax=0的两个线性无关的解。由方程组的基础解系所含解向量的个数与系数矩阵秩的关系,可得n—r(A)≥2,即r(A)≤3。又因为A是五阶矩阵,所以|A|的四阶子式一定全部为零,则代数余子式A
ij
为零,即A
*
=O,所以r(A
*
)=0。
转载请注明原文地址:https://www.kaotiyun.com/show/mmP4777K
0
考研数学三
相关试题推荐
设总体X的密度函数为f(x,θ)=其中θ>0为未知参数,X1,X2,…,Xn为来自X的样本,Yn={Xi}.(1)证明:都是θ的无偏估计量;(2)比较这两个估计量,哪一个更有效?
设A是m×n矩阵,对矩阵A作初等行变换得到矩阵B,证明:矩阵A的列向量与矩阵B相应的列向量有相同的线性相关性.
设函数f(x)在(0,+∞)内连续,f(1)=,且对一切的x、t∈(0,+∞)满足条件:∫1xtf(u)du=t∫1xf(u)du+x∫1tf(u)du.求函数f(x)的表达式.
设n阶方阵A≠0,满足Am=0(其中m为某正整数).(1)求A的特征值.(2)证明:A不相似于对角矩阵.(3)证明:|E+A|=1.(4)若方阵B满足AB=BA,证明:|A+B|=|B|.
设A为m×n矩阵,B是n×m矩阵,证明:AB和BA有相同的非零特征值.
设两个线性方程组(I),(Ⅱ)为证明:方程组(I)有解的充分必要条件是方程组(Ⅱ)无解.
已知齐次线性方程组(I)的基础解系为ξ1=[1,0,1,1]T,ξ2=[2,1,0,一1]T,ξ3=[0,2,1,一1]T,添加两个方程后组成齐次方程组(Ⅱ),求(Ⅱ)的基础解系.
设随机变量X与Y分别表示将一枚骰子接连抛两次后出现的点数.试求齐次方程组:的解空间的维数(即基础解系所含向量的个数)的数学期望和方差.
设函数z=f(x,y)具有二阶连续偏导数,且≠0,试证明:对任意的常数c,f(x,y)=c为一直线的充分必要条件是(f’y)2.f"xx一2f’x.f’y.f"xy+(f’x)2.f’yy=0.
二次型f(x1,x2,x3)=x12+3x22+x32+2x1x2+2x1x3+2x2x3,则f的正惯性指数为____________.
随机试题
Howmanythingscanyouseeinthenightsky?Alot!OnaclearnightyoumightseetheMoon,someplanets,andthousandsofspa
患者男,33岁。胸闷、气短、咳嗽、咳痰2个月,进行性加重。查体:血压120/80mmHg,颈静脉怒张,双肺底可闻及湿啰音,心脏向左下扩大,心率110次/分,可及奔马律,肝肋下3cm,双下肢水肿。肌钙蛋白正常。能够提高该患者生存期的药物为
关于司法的表述,下列哪些选项可以成立?(司考.2007.1.54)
【背景资料】某高校新建一栋办公楼和一栋实验楼,均为现浇钢筋混凝土框架结构。办公楼地下1层,地上11层,建筑檐高48m;实验楼6层,建筑檐高22m。建设单位与某施工总承包单位签订了施工总承包合同。合同约定:(1)电梯安装工程由建设单位指定分包;(2)保温工程
关于国际金本位制的内容,正确的是()。
根据资料,回答下列问题。2009年,根据产量由小到大排列正确的是()。
2月9日下午15:00点,小华利用网络软件进行约车。司机黄某见小华衣饰华丽,便威胁其交出钱财,小华便向公安机关报案。下列哪些属于公安机关应了解的信息?()
编译下面源程序会得到—文件。classA1{}classA2{}publicclassB{publicstaticvoidmain(Stringargs[]){
Whichwordcanbestdescribethefreshmen?
InEnglishthelettercomhinati6n"mis-"intheword"misunderstand"iscalled______.
最新回复
(
0
)