首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2014年] 设A=,E为3阶单位矩阵. (I)求方程组AX=0的一个基础解系;(Ⅱ)求满足AB=E的所有矩阵B.
[2014年] 设A=,E为3阶单位矩阵. (I)求方程组AX=0的一个基础解系;(Ⅱ)求满足AB=E的所有矩阵B.
admin
2019-05-10
62
问题
[2014年] 设A=
,E为3阶单位矩阵.
(I)求方程组AX=0的一个基础解系;(Ⅱ)求满足AB=E的所有矩阵B.
选项
答案
对(I),只需将A化为含最高阶单位矩阵的矩阵,由基础解系的简便求法(参阅《考研数学常考题型解题方法技巧归纳(数学二)》2.4.4节)即可写出一个基础解系.对(Ⅱ),因A为不可逆矩阵,求解矩阵方程AB=E,常用待定元素法求之,即设出待求矩阵B中元素B=(x
ij
)
4×3
=(X
1
,X
2
,X
3
),转化为求解矩阵方程AX
i
=b
i
(i=1,2,3). (Ⅰ)为求AX=0的一个基础解系,只需用初等行变换将A化为含最高阶单位矩阵的矩阵:[*] 由基础解系的简化求法即可得到AX=0的一个基础解系只含一个解向量α,且 α=[一1,2,3,1]
T
. (Ⅱ)因A不可逆,需用待定元素法求出满足AB=E的所有矩阵,由AB=E,A为3×4矩阵,E为3×3矩阵,则B必为4×3矩阵,设其元素为x
ij
,由B=(x
ij
)
4×3
得到 [*] 因而得到下述三个线性方程组: [*] 对上述三个方程组的增广矩阵用初等行变换化为含最高阶单位矩阵的矩阵: [*] 由基础解系和特解的简便求法(参阅《考研数学常考题型解题方法技巧归纳(数学二)》2.4.4节),即得方程组①的一个特解及对应的齐次线性方程组的一个基础解系分别为: η
1
=[2,一1,一1,0]
T
,α
1
=[一1,2,3,1]
T
于是该方程组的通解为 X
1
=[x
11
,x
21
,x
31
,x
41
]
T
=Y
1
+η
1
=k
1
α
1
+η
1
=[一k
1
+2,2k
1
—1,3k
1
—1,k
1
]
T
. 同样由[*]可得方程组②的通解为 X
2
=[x
12
,x
22
,x
32
,x
42
]
T
=Y
2
+η
2
=k
2
α
2
+η
2
=k
2
[-1,2,3,1]
T
+[6,一3,一4,0]
T
=[一k
2
+6,2k
2
一3,3k
2
-4,k
2
]
T
. 由[*]可得方程组③的通解为 X
3
=[x
13
,x
23
,x
33
,x
43
]
T
=Y
3
+η
3
=k
3
α
3
+η
3
. =k
3
[1,2,3,1]
T
+[-1,1,l,0]
T
=[一k
3
-1,2k
3
+l,3k
3
+1,k
3
]
T
. 综上得到, B=[X
1
,X
2
,X
3
]=[*](k
1
,k
2
,k
3
为任意常数).
解析
转载请注明原文地址:https://www.kaotiyun.com/show/mjV4777K
0
考研数学二
相关试题推荐
当A=()时,(0,1,-1)和(1,0,2)构成齐次方程组AX=0的基础解系.
设f(χ)在χ0的邻域内四阶可导,且|f(4)(χ)|≤M(M>0).证明:对此邻域内任一异于χ0的点χ,有其中χ′为χ关于χ0的对称点.
设f(χ)在χ=a处二阶可导,证明=f〞(a).
计算,其中D为单位圆χ2+y2=1所围成的第一象限的部分.
设y=f(χ)为区间[0,1]上的非负连续函数.(1)证明存在c∈(0,1),使得在区间[0,c]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(χ)为曲边的曲边梯形的面积;(2)设f(χ)在(0,1)内可导,且f′(χ)>-,
设抛物线y=aχ2+bχ+c(a<0)满足:(1)过点(0,0)及(1,2);(2)抛物线y=aχ2+bχ+c与抛物线y=-χ2+2χ所围图形的面积最小,求a,b,c的值.
设a是整数,若矩阵A=的伴随矩阵A*的特征值是4,-14,-14.求正交矩阵Q,使QTQ为对角矩阵.
设A是三阶矩阵,其特征值是1,2,3,若A与B相似,求|B*+E|.
设α1,α2,…,αm,β1,β2,…,βn线性无关,而向量组α1,α2,…,αm,γ线性相关.证明:向量γ可由向量组α1,α2,…,αm,β1,β2,…,βn线性表示.
设3阶矩阵A的特征值为2,3,λ.若行列式|2A|=-48,则λ=________.
随机试题
散文名篇《长江三日》的作者是()
某高血压患者,65岁,发生广泛前壁急性心肌梗死3小时入院。下列各情况中提示该患者不能应用溶栓治疗的是
根据我国的法律规定,下列哪些情况可以形成法律关系并且是隶属型法律关系?()
下列关于招标采购的说法中,错误的是()。
良好的绝缘对于保证电气设备与线路的安全运行,防止人身触电事故的发生是最基本的和最可靠的手段,双重绝缘是强化的绝缘结构。下列关于双重绝缘的说法正确的是()。
对行政申请人隐瞒情况或提供虚假情况申请行政许可的,可能的处理有( )。
细胞因为发生了基因突变,出现不受控制地增殖分化,最终发展成为恶性肿瘤。在癌细胞表面存在着许多由突变基因编码的异常蛋白,按理说,这些异常蛋白应该被机体免疫系统及时识别,并引发免疫反应将癌细胞一举清除。然而,由于肿瘤细胞发展迅速、极善伪装,而且不断突变,面对凶
名词、动词、区别词都是实词。()
下列叙述中正确的是
A、Therighthand.B、Thelefthand.C、Bothhands.D、Itdepends.B原文提到,婴儿16周大时,主要使用左手进行触摸,因此B正确。
最新回复
(
0
)