首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知二次型f(x1,x2,x3)=(1一a)x12+(1一a)x22+2x32+2(1+a)1x2的秩为2. (I)求a的值; (Ⅱ)求正交变换x=Qy,把f(x1,x2,x3)化成标准形; (III)求方程f(x1,x2,x3)=0的解.
已知二次型f(x1,x2,x3)=(1一a)x12+(1一a)x22+2x32+2(1+a)1x2的秩为2. (I)求a的值; (Ⅱ)求正交变换x=Qy,把f(x1,x2,x3)化成标准形; (III)求方程f(x1,x2,x3)=0的解.
admin
2016-04-11
79
问题
已知二次型f(x
1
,x
2
,x
3
)=(1一a)x
1
2
+(1一a)x
2
2
+2x
3
2
+2(1+a)
1
x
2
的秩为2.
(I)求a的值;
(Ⅱ)求正交变换x=Qy,把f(x
1
,x
2
,x
3
)化成标准形;
(III)求方程f(x
1
,x
2
,x
3
)=0的解.
选项
答案
(1)f的秩为2,即f的矩阵 [*] 可知A的特征值为λ
1
=λ
2
=2,λ
3
=0. A的属于λ
1
=2的线性无关的特征向量为 η
1
=(1,l,0)
T
,η
2
=(0,0,1)
T
A的属于λ
3
=0的线性无关的特征量为 η
3
=(-1,1,0)
T
易见η
1
,η
2
,η
3
,两两正交.将η
1
,η
2
,η
3
单位化得 [*] 取Q=(e
1
,e
2
,e
3
),则Q为正交矩阵.作正交变换x=Qy,得f的标准形为 f(η
1
,η
2
,η
3
)=λ
1
y
1
2
+λ
2
y
2
2
+λ
3
y
3
2
=2y
1
2
+2y
1
2
. (3)在正交变换x=Qy下,f(η
1
,η
2
,η
3
)=0化成2y
1
2
+2y
1
2
=0,解之得y
1
一y
2
=0,从而得所求方程的解为x=Q[*]=y
3
e
3
=k(-1,1,0)
2
,其中k为任意常数。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/m8w4777K
0
考研数学一
相关试题推荐
设f(x)在[a,b]上可导,F(x)=f(x)-x若F(x)在x=a处取得最小值,在x=b处取得最大值,则()
证明:∫0(2n-1)πxf(|sinx|)dx=(2n-1)π/2∫0(2n-1)πf(|sinx|)dx(n为正整数)。
已知线性方程组(Ⅰ)a,b为何值时,方程组有解?(Ⅱ)方程组有解时,求出方程组的导出组的一个基础解系;(Ⅲ)方程组有解时,求出方程组的全部解.
设A=*,且α=为矩阵A的特征向量.(Ⅰ)求a,b的值及a对应的特征值λ.(Ⅱ)求正交矩阵Q,使得QTAQ为对角阵.
已知二次型f(x1,x2,x3)=xTAx,A是3阶实对称矩阵,满足A2-2A-3E=O,且|A|=3,则该二次型的规范形为()
设函数y=y(x)由参数方程确定,则2|t=0=________.
多项式f(x)=中x3项的系数为________.
设A、B、C是随机事件,A与C互不相容,P(AB)=1/2,P(C)=1/3,则P(AB|C ̄)=________.
设总体X的概率密度为p(x,λ)=,其中λ>0为未知参数,α>0是已知常数,试根据来自总体X的简单随机样本X1,X2,…,X,求λ的最大似然估计量λ.
随机试题
MillionsofwordshavebeenwrittenaboutyoungpeopleintheUnitedStates.Therearereasonsforthisgreatinterestintheid
脑组织中灰质血流量与白质血流量的关系
A.含有国家濒危野生动物药材的药品B.诊断药品C.维生素、矿物质类药品D.根据药物经济学评价,可被成本效益比更优的品种所替代的药品应当从国家基本药物目录调出的药品是
完全竞争市场是指同时具备()条件的市场结构。
在国产非标准设备的原价的计算过程中,可以作为利润计算基数的是()。
某建设单位建一锅炉房,预计工期为5个月,土建工程合同价款为50万元,该工程采用()方式较为合理。
会计人员工作调动,须办理移交手续。除特殊情况外,没有办理移交手续的.不得调动。()
甲公司与乙公司解除合同关系,但合同中的仲裁条款仍然有效。()
无形资产摊销—定会影响当期损益。()
关于经济基础与上层建筑关系的论述,下列说法不正确的是()。
最新回复
(
0
)