首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2013年] 设二次型 f(x1,x2,x3)=2(a1x1+a2x2+a33x3)2+(b1x1+b2x2+b3x3)2, 记 若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12+y22.
[2013年] 设二次型 f(x1,x2,x3)=2(a1x1+a2x2+a33x3)2+(b1x1+b2x2+b3x3)2, 记 若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12+y22.
admin
2021-01-19
90
问题
[2013年] 设二次型
f(x
1
,x
2
,x
3
)=2(a
1
x
1
+a
2
x
2
+a
3
3x
3
)
2
+(b
1
x
1
+b
2
x
2
+b
3
x
3
)
2
,
记
若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y
1
2
+y
2
2
.
选项
答案
因α,β为单位向量且相互正交,有 β
T
α=α
T
β=0,∣∣α∣∣=[*]=1,∣∣β∣∣=[*]=1, 故α
T
α=1,,β
T
β=1,因而 Aα=(2αα
T
+ββ
T
)α=2α(α
T
α)+β(β
T
α)=2α∣∣α∣∣+β(β
T
α)=2α·1+β·0=2α 即α为A的属于特征值λ
1
=2的特征向量. Aβ=(2αα
T
+ββ
T
)β=2α(α
T
β)+β(β
T
β)=2α·0+β·1=β, 即β为A的属于特征值λ
2
=1的特征向量. 又秩(A)=秩(2αα
T
+ββ
T
)≤秩(2αα
T
)+秩(ββ
T
)≤秩(α)+秩(β)=1+1=2<3, 则A的第三个特征值为λ
3
=0.故f在正交变换下的标准形为2y
1
2
+y
2
2
.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/jv84777K
0
考研数学二
相关试题推荐
设B≠O为三阶矩阵,且矩阵B的每个列向量为方程组的解,则k=_______,|B|=_______.
设A为二阶矩阵,α1,α2为线性无关的二维列向量,Aα1=0,Aα2=2α1+α2,则A的非零特征值为______。
已知矩阵有两个线性无关的特征向量,则a=______。
若α1,α2,α3是三维线性无关的列向量,A是三阶方阵,且Aα1=α1+α2,Aα2=α2+α3,Aα3=α3+α1,则|A|=_______.
设A=,A*为A的伴随矩阵,则(A*)-1=_________。
设f(x1,x2)=,则二次型的对应矩阵是_________。
若a1,a2,a3,β1,β2都是4维列向量,且4阶行列式|a1,a2,a3,β1|=m,|a1,a2,β2,a3|=n,则4阶行列式|a1,a2,a3,β1+β2|=
若向量组α1=(1,一1,2,4)T,α2=(0,3,1,2)T,α4=(3,0,7,a)T,α4=(1,一2,2,0)T线性无关,则未知数a的取值范围是__________.
设f(x)在[a,b]上连续,证明:
已知A是n阶矩阵,α1,α2,…,αs是n维线性无关向量组,若Aα1,Aα2,…,Aαs线性相关,证明:A不可逆.
随机试题
由私人资本主义经济向社会主义国营经济过渡的形式是()
A.急性胆囊炎B.急性胰腺炎C.胰头癌D.急性阑尾炎Greyr-Turner征阳性常见于
杀菌作用最强的紫外线波段是
A.肺+脑B.骨+脑C.骨+肺D.骨+肝E.肺+肝对乳腺癌已远处转移的治疗时,哪项转移以化疗为主,一般不作放疗
腰椎间盘突出多发生于
下列关于脐疝的叙述不正确的是
根据《公司债券发行与交易管理办法》的规定,合格投资者应当具备相应的风险识别和承担能力,能够自行承担公司债券的投资风险,并符合一定资质条件。下列投资者符合该资质条件的有()。
甲妻因车祸去世,甲继承两居室房屋一套,但未到房屋登记机关办理产权变更登记。料理完亡妻后事,甲决定外出散心。甲报名参加了乙旅行社组织的海滨三日游。其间,甲随团到海滨浴场游泳。该海滨浴场深水区时有水母伤人事件发生,但知悉此事的乙旅行社只是简单要求游客不要游离
公安工作的对象决定了公安工作具有打击与保护的双重特点。()
Televisionhasopenedwindowstoeverybody.Youngmenwillneveragaingotowarastheydidin1914.Millionsofpeoplenowhav
最新回复
(
0
)