首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)证明两个上三角矩阵A和B的乘积AB还是上三角矩阵;并且AB对角线元素就是A和B对应对角线元素的乘积. (2)证明上三角矩阵A的方幂Ak与多项式f(A)也都是上三角矩阵;并且Ak的对角线元素为a11k,a22k,…,annk;f(A)的对角线元
(1)证明两个上三角矩阵A和B的乘积AB还是上三角矩阵;并且AB对角线元素就是A和B对应对角线元素的乘积. (2)证明上三角矩阵A的方幂Ak与多项式f(A)也都是上三角矩阵;并且Ak的对角线元素为a11k,a22k,…,annk;f(A)的对角线元
admin
2018-11-23
50
问题
(1)证明两个上三角矩阵A和B的乘积AB还是上三角矩阵;并且AB对角线元素就是A和B对应对角线元素的乘积.
(2)证明上三角矩阵A的方幂A
k
与多项式f(A)也都是上三角矩阵;并且A
k
的对角线元素为a
11
k
,a
22
k
,…,a
nn
k
;f(A)的对角线元素为f(a
11
),f(a
22
),…,f(a
nn
).
选项
答案
(1)设A和B都是n阶上三角矩阵,C=AB,要说明C的对角线下的元素都为0,即i>j时,c
ij
=0.c
ij
=A的第i个行向量和B的第j个列向量对应分量乘积之和. 由于A和B都是n阶上三角矩阵,A的第i个行向量的前面i-1个分量都是0,B的第j个列向量的后面n-j个分量都是0,而i-1+n-j=n+(i-j-1)≥n,因此c
ij
=0. c
ii
=a
i1
b
1i
+…+a
ii-1
b
i-1i
+a
ii
b
ii
+a
ii+1
b
i+1i
+…+a
in
b
ni
=a
ii
b
ii
(a
i1
…=a
ii-1
=0,b
i+1i
=…=b
ni
=0). (2)设A是上三角矩阵.由(1),直接可得A
k
是上三角矩阵,并且对角线元素为a
11
k
,a
22
k
,a
nn
k
. 设f(A)=a
m
A
m
+a
m-1
A
m-1
+…+
1
A+a
0
E.a
i
A
i
都是上三角矩阵,作为它们的和,f(A)也是上三角矩阵.f(A)的对角线元素作为它们的对角线元素的和,是f(a
11
),f(a
22
),f(a
nn
).
解析
转载请注明原文地址:https://www.kaotiyun.com/show/i9M4777K
0
考研数学一
相关试题推荐
设二维随机变量(X,Y)的概率密度为则随机变量Z=X—Y的方差DZ为_________.
设随机变量,i=1,2;且P(X1X2=0}=1.则P{X1=X2)等于
设考生的报名表来自三个地区,各有10份、15份、25份报名表,其中女生表分别为3份、7份、5份.现随机抽一个地区的报名表,从中先后任取2份.(1)求先取的一份是女生表的概率;(2)已知后取的一份是男生表,求先取的一份是女生表的概率.
为了研究施肥和不施肥对某种农作物产量的影响独立地,选了13个小区在其他条件相同的情况下进行对比试验,得收获量如下表:设小区的农作物产量均服从正态分布且方差相等,求施肥与未施肥平均产量之差的置信度为0.95的置信区间(t0.975(11)=2.201,下
(05年)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明:(I)存在ξ∈(0,1),使得f(ξ)=1一ξ;(Ⅱ)存在两个不同的点η,ζ∈(0,1),使得f’(η)f’(ζ)=1.
(94年)设相互独立的两个随机变量X与Y具有同一分布律,且X的分布律为则随机变量Z=max{X,Y)的分布律为______.
(00年)设两个相互独立的事件A和B都不发生的概率为,A发生B不发生的概率与B发生A不发生的概率相等,则P(A)=________.
(93年)已知二次型f(x1,x2,x3)=2x12+3x22+3x32+2ax2x3(a>0)通过正交变换化成标准形f=y12+2y22+5y32,求参数a及所用的正交变换矩阵.
设A,B,C是两两相互独立且三事件不能同时发生的事件,且P(A)=P(B)=P(C)=x,则使P(A∪B∪C)取最大值的x为()
设X1,X2,…,Xn独立同分布,且Xi(i=1,2,…,n)服从参数为λ的指数分布,则下列各式成立的是()(其中Ф(x)=
随机试题
Widowers’House,aplaywrittenbyGeorgeBernardShaw,isagrotesquelyrealisticexposureof______.()
患者,女,17岁。1周前发热,体温38℃,伴有恶心、呕吐、腹泻,按肠炎治疗好转。近3天来感胸闷、憋气、头晕、乏力。查体:体温36℃,心率100次/分,律齐,血压120/60mmHg,双肺清。心电图示:一度房室传导阻滞,T波倒置。导致该患者上述症状可能的
A.泽泻B.滑石C.茵陈D.苹薜E.地肤子茯苓具有的功效是
直线型监理组织形式的优点是()。
可撤消的信用证一旦寄达受益人以后,在其有效期间内,非经开证人、开证行、保兑行或受益人等有关方面的同意,不得将该信用证的条款进行修改或撤消,一般情况下,信用证上只要未注明“可撤消”,则视为不可撤消信用证。
下列关于旅游者所享有的权利的说法中,不正确的是()
[2011年]求不定积分
NetWare第二级容错包括硬盘镜像和——功能。
LivingAloneIsJoyfulMoreandmoreAmericansarelivingalone.Somelivealonebecauseofdivorceorthedeathofapartne
Languagecomprehensionisgenerallyviewedincognitivetheoryasconsistingofactiveandcomplexprocessesinwhichindividual
最新回复
(
0
)