首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[-a,a](a>0)上有四阶连续的导数,存在. 证明:存在ξ1,ξ2∈[-a,a],使得
设f(x)在[-a,a](a>0)上有四阶连续的导数,存在. 证明:存在ξ1,ξ2∈[-a,a],使得
admin
2018-11-11
102
问题
设f(x)在[-a,a](a>0)上有四阶连续的导数,
存在.
证明:存在ξ
1
,ξ
2
∈[-a,a],使得
选项
答案
上式两边积分得[*] 因为f
(4)
(x)在[-a,a]上为连续函数,所以f
(4)
(x)在[-a,a]上取到最大值M和最小值m,于是有mx
4
≤f
(4)
(ξ)
4
≤Mx
4
, [*] 根据介值定理,存在ξ
1
∈[-a,a],使得f
(4)
(ξ
1
)=[*],或a
5
f
(4)
(ξ
1
)=60∫
-a
a
f(x)dx.再由积分中值定理,存在ξ
2
∈[-a,a],使得 a
5
f
(4)
(ξ
1
)=60∫
-a
a
f(x)dx=120af(ξ
2
),即a
4
f
(4)
(ξ
1
)=120f(ξ
2
)
解析
转载请注明原文地址:https://www.kaotiyun.com/show/gxj4777K
0
考研数学二
相关试题推荐
设有甲,乙两种零件,彼此可以代用,但乙种零件比甲种零件制造简单,造价低,经过试验获得抗压强度(单位:kg/cm2)为甲种零件:88,87,92,90,91,乙种零件:89,89,90,84,88.假设甲乙两种零件的抗压强度均服
设矩阵求B+2E的特征值与特征向量,其中A*为A的伴随矩阵,E为3阶单位矩阵.
设某地在任何长为t的时间间隔内发生地震的次数X服从参数为λt的泊松分布,时间以周计,λ>0,(1)设T为两次地震之间的间隔时间,求T的概率分布;(2)求相邻两周内至少发生三次地震的概率;(3)求连续8周无地震的条件下,在未来7周内仍无地震的概率.
设y1=e-x,y2=2xe-x,y3=3ex是某三阶常系数齐次线性微分方程的解,试确定该微分方程的形式.
设=(a1,a2,…,an)T,a1≠0,A=aaT,证明λ=0是A的n一1重特征值;
(1)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f’(ξ)(b—a).(2)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且,则f+’(0)存在,且f+’
设函数f(u)在(0,+∞)内有二阶导数,且(1)验证(2)若f(1)=0,f’(1)=1,求函数f(u)的表达式.
(2004年)曲线y=与直线χ=0,χ-t(t>0)及y=0围成一曲边梯形.该曲边梯形绕χ轴旋转一周得一旋转体,其体积为V(t),侧面积为S(t),在χ=t处的底面积为F(t).(Ⅰ)求的值;(Ⅱ)计算极限
设A为n阶矩阵,λ1和λ2是A的两个不同的特征值.x1,x2是分别属于λ1和λ2的特征向量,试证明:x1+x2不是A的特征向量.
计算下列各题:(Ⅰ)设其中f(t)三阶可导,且f〞(t)≠0,求;(Ⅱ)设的值.
随机试题
休克时常见白细胞贴壁黏着的部位
下列关于奥司他韦的叙述,哪一项是不正确的()
图示图形,属于下述几种照明中的哪种照明?
下列作业中会产生生产性粉尘的是()。
材料采购合同履行中,供货方提前将订购的材料发运到工程所在地,且交付数量远多于合同约定,采购方应该( )。
在教育活动中,教师是具有()的主体。
欧阳文忠公屡乞致仕,门人因闻言曰:“公德望为朝廷倚重,(1)且未及引年,岂容遂去?”公答曰:“(2)修平生名节为后生描画尽,(3)有早退,以全晚节,岂可更候驱逐乎?”【注】致仕:退休从文中可以看出欧阳修是个___________的人。
个别教师不允许班上学习差的学生参加考试、随意占用学生的上课时间、指派学生参加一些与教育教学无关的商业庆典活动等。这些行为主要侵害的是学生的()。
A、 B、 C、 B
RupertBrookeRupertBrooke,oneoftheleadingpoetsofhisgeneration,wasrenownedasaromantic,unlikemanyofhiscon
最新回复
(
0
)